АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Решение логарифмических неравенств

Читайте также:
  1. VIII. Дополнения из самого раннего детства. Разрешение
  2. А теперь мое решение проблемы
  3. А ты? Кому ты доверяешь и что надо, чтобы ты доверял? Кому не доверяешь и почему? На каких критериях основано твое собственное решение о доверии и недоверии? Перечисли их.
  4. А) Решение задачи Коши для ОДУ
  5. автентическое разрешение плагальное разрешение
  6. Алгоритм решения дробно-рациональных неравенств.
  7. Аналитическое решение дифференциальных уравнений
  8. Аналогично доказывается и правое неравенство.
  9. АРБИТРАЖНОЕ РЕШЕНИЕ
  10. Архитектурно-конструктивное решение здания.
  11. Б) Решение краевой задачи для ОДУ
  12. БЕСЕДУЮЩИЙ-С-СОЛНЦАМИ. ЛОРАНА ПРИНИМАЕТ РЕШЕНИЕ

Решение логарифмических неравенств имеет много общего с решением показательных неравенств:

а) При переходе от логарифмов к выражениям, стоящим под знаком логарифма, мы также сравниваем основание логарифма с единицей;

б) Если мы решаем логарифмическое неравенство с помощью замены переменных, то нужно решать относительно замены до получения простейшего неравенства.

Однако, есть одно очень важное отличие: поскольку логарифмическая функция имеет ограниченную область определения, при переходе от логарифмов к выражениям, стоящим под знаком логарифма, необходимо учитывать область допустимых значений.

Если при решении логарифмического уравнения можно найти корни уравнения, а потом сделать проверку, то при решении логарифмического неравенства этот номер не проходит: при переходе от логарифмов к выражениям, стоящим под знаком логарифма необходимо записывать ОДЗ неравенства.

Итак. Простейшее логарифмическое неравенство имеет вид:

V , где V – один из знаков неравенства: <,>, ≤ или ≥.

Если основание логарифма больше единицы () , то при переходе от логарифмов к выражениям, стоящим под знаком логарифма, знак неравенства сохраняется, и неравенство

равносильно системе:

Если основание логарифма больше нуля и меньше единицы (), то при переходе от логарифмов к выражениям, стоящим под знаком логарифма, знак неравенства меняется на противоположный, и неравенство

равносильно системе:

Рассмотрим примеры решения логарифмических неравенств.

1. Решим неравенство:

Так как основание логарифмов в обеих частях неравенства меньше 1, при переходе к выражениям, стоящим под знаком логарифма, знак неравенства меняется на противоположный. Выражения, стоящие под знаком логарифма должны быть строго больше нуля. Перейдем к системе:

Обратите внимание: мы указываем, что больше нуля должно быть меньшее из выражений, которые стоят под знаком логарифма. В этом случает большее выражение автоматически будет больше нуля.

Решим систему неравенств:

Корни квадратного трехчлена: ,

Отсюда:

Ответ:

2. Решим неравенство:

Мы видим, что в основании логарифмов стоят степени числа 2, поэтому мы можем привести логарифмы к одному основанию. Сделаем это, воспользовавшись свойствами логарифмов:

Перенесем логарифм с отрицательным коэффициентом из левой части неравенства в правую (так как умножать легче, чем делить).

Так как в неравенстве присутствуют логарифмы с одинаковым основанием и в первой степени, мы можем представить обе части неравенства в виде логарифма по основанию 2:

Теперь мы можем перейти от логарифмов к выражениям, стоящим под знаком логарифма. Основание больше 1, поэтому знак неравенства сохраняется. Не забываем про ОДЗ:

Отсюда:

Ответ:

 

3. Решим неравенство:

В нашем неравенстве логарифм стоит в квадрате, поэтому это логарифмическое неравенство мы будем решать с помощью замены переменных.

Сначала приведем логарифмы к одному основанию:

Введем замену переменных:

.

Получим квадратное неравенство:

Значит, .

Запишем это двойное неравенство в виде системы:

Вот только теперь, когда мы получили систему простейших неравенств относительно , мы можем вернуться к исходной переменной.

Перейдем к варажениям, стоящим под знаком логарифма:

Последнее неравенство системы – это ОДЗ неравенства. Заметим, что оно выполняется, если выполняется второе неравенство системы, поэтому нет необходимости его решать.

Решим систему.

Первое неравенство системы преобразуется к виду

Дискриминант этого квадратного трехчлена отрицателен, старший коэффициет положителен, поэтому неравенство верно при любых действительных значениях .

Второе неравенства преобразуется к виду , отсюда

Ответ:

 


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)