|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Обобщенный метод наименьших квадратовВ тех случаях, когда все пять предпосылок МНК выполняются, рассматриваемая модель
При нарушении гомоскедастичности и при наличии автокорреляции ошибок рекомендуется традиционный метод наименьших квадратов (известный в английской терминологии как метод OLS – Ordinary Least Squares) заменять обобщенным методом, т. е. методом GLS (Generalized Least Squares). Обобщенный метод наименьших квадратов применяется к преобразованным данным и позволяет получать оценки, которые обладают не только свойством несмещенности, но и имеют меньшие выборочные дисперсии. Специфика обобщенного МНК, применительно к корректировке данных при автокорреляции остатков, будет рассмотрена далее. Здесь остановимся на использовании обобщенного МНК для корректировки гетероскедастичности. Как и раньше, будем предполагать, что среднее значение остаточных величин равно нулю. А вот дисперсия их не остается неизменной для разных значений фактора, а пропорциональна величине Ki, т. е. В общем виде для уравнения Иными словами, от регрессии y по x мы перейдем к регрессии на новых переменных:
Исходные данные для данного уравнения будут иметь вид:
По отношению к обычной регрессии уравнение с новыми, преобразованными переменными, представляет собой взвешенную регрессию, в которой переменные y и x взяты с весами Оценка параметров нового уравнения с преобразованными переменными приводит к взвешенному методу наименьших квадратов, для которого необходимо минимизировать сумму квадратов отклонений вида: Соответственно получим следующую систему нормальных уравнений:
Если преобразованные переменные x и y взять в отклонениях от средних уровней, то коэффициент регрессии b можно определить как:
При обычном применении метода наименьших квадратов к уравнению линейной регрессии для переменных в отклонениях от средних уровней, коэффициент регрессии b определяется по формуле:
Как видим, при использовании обобщенного МНК с целью корректировки гетероскедастичности, коэффициент регрессии b представляет собой взвешенную величину по отношению к обычному МНК, с весами Аналогичный подход возможен не только для уравнения парной, но и множественной регрессии. Предположим, что рассматривается модель вида:
для которой дисперсия остаточных величин оказалась пропорциональна
где ошибки гетероскедастичны. Чтобы получить уравнение, где остатки
Это уравнение не содержит свободного члена. Вместе с тем, найдя переменные в новом преобразованном виде и применяя обычный МНК к ним, получим иную спецификацию модели:
Параметры такой модели зависят от концепции, принятой для коэффициента пропорциональности предположить, что
Если предположить, что ошибки пропорциональны
Применение в этом случае обобщенного МНК приводит к тому, что наблюдения с меньшими значениями преобразованных переменных x/K имеют при определении параметров регрессии относительно больший вес, чем с первоначальными переменными. Вместе с тем, следует иметь ввиду, что новые преобразованные переменные получают новое экономическое содержание, и регрессия по ним имеет иной смысл, чем регрессия по исходным данным. Пусть y – издержки производства, x1 – объем продукции, x2 – основные производственные фонды, x3 –численность работников, тогда уравнение является моделью издержек производства с объемными факторами. Предполагая, что
где параметры Если предположить, что в модели с первоначальными переменными дисперсия остатков пропорциональна квадрату объема продукции,
В нем новые переменные: Гипотеза о пропорциональности остатков величине фактора может иметь реальное основание: при обработке недостаточно однородной совокупности, включающей как крупные, так и мелкие предприятия, большим объемным значениям фактора может соответствовать и большая дисперсия результативного признака, и большая дисперсия остаточных величин. При наличии одной объясняющей переменной гипотеза
в уравнение
в котором параметры α и β поменялись местами, константа стала коэффициентом наклона линии регрессии, а коэффициент регрессии – свободным членом. Так, например, рассматривая зависимость сбережений y от дохода x, по первоначальным данным было получено уравнение регрессии:
Применяя обобщенный МНК к данной модели в предположении, что ошибки пропорциональны доходу, было получено уравнение для преобразованных данных:
Коэффициент регрессии первого уравнения сравнивают со свободным членом второго уравнения, т. е. 0,1178 и 0,1026 – оценки параметра b зависимости сбережений от дохода. Переход к относительным величинам существенно снижает вариацию фактора и соответственно уменьшает дисперсию ошибки. Он представляет собой наиболее простой случай учета гетероскедастичности в регрессионных моделях с помощью обобщенного МНК. Возможны и усложнения рассмотренный процедуры за счет выдвижения иных гипотез о пропорциональности ошибок относительно включенных в модель факторов. Например, Обобщённый МНК устраняет гетероскедастичность, если известна взаимосвязь ошибок регрессии
|
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.024 сек.) |