АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Знакочередующиеся ряды. Признак Лейбница. Примеры решений

Читайте также:
  1. II. Примеры, подтверждающие милость, явленную в Пророке, да благословит его Аллах и да приветствует.
  2. MS Excel.Текстовые функции, примеры использования текстовых функций.
  3. SCADA. Назначение. Возможности. Примеры применения в АСУТП. Основные пакеты.
  4. Административное производство по жалобе или протесту по делам об административных правонарушениях: основание, процедура и сроки рассмотрения, виды решений при рассмотрении.
  5. Альтернативность решений в финансовом менеджменте.
  6. Анализ ассортимента по классификационным признакам
  7. Анализ известных технических решений в рассматриваемой области и выбор прототипа проектируемого изделия.
  8. Анализ клинических признаков болезни.
  9. Антонимы, выражающие противоположную направленность действий, свойств и признаков.
  10. Апелляционное и кассационное обжалование судебных решений, не вступивших в законную силу
  11. Ароматерапия — эстетическая методика. Чувство меры – признак высокого вкуса.
  12. Аспекты экономических решений

 

Для того чтобы понять примеры данного урока необходимо хорошо ориентироваться в положительных числовых рядах: понимать, что такое ряд, знать необходимый признак сходимости ряда, уметь применять признаки сравнения, признак Даламбера, признаки Коши. Тему можно поднять практически с нуля, последовательно изучив статьи Ряды для чайников и Признак Даламбера. Признаки Коши. Логически этот урок является третьим по счёту, и он позволит не только разобраться в знакочередующихся рядах, но и закрепить уже пройденный материал! Какой-то новизны будет немного, и освоить знакочередующиеся ряды не составит большого труда. Всё просто и доступно.

Что такое знакочередующийся ряд? Это понятно или почти понятно уже из самого названия. Сразу простейший пример.

Рассмотрим ряд и распишем его подробнее:

А сейчас будет убийственный комментарий. У членов знакочередующегося ряда чередуются знаки: плюс, минус, плюс, минус, плюс, минус и т.д. до бесконечности.

Знакочередование обеспечивает множитель : если чётное, то будет знак «плюс», если нечётное – знак «минус». На математическом жаргоне эта штуковина называется «мигалкой». Таким образом, знакочередующийся ряд «опознается» по минус единичке в степени «эн».

В практических примерах знакочередование членов ряда может обеспечивать не только множитель , но и его родные братья: , , , …. Например:

Подводным камнем являются «обманки»: , , и т.п. – такие множители не обеспечивают смену знака. Совершенно понятно, что при любом натуральном : , , . Ряды с обманками подсовывают не только особо одаренным студентам, они время от времени возникают «сами собой» в ходе решения функциональных рядов.

Как исследовать знакочередующийся ряд на сходимость? Использовать признак Лейбница. Про немецкого гиганта мысли Готфрида Вильгельма Лейбница я рассказывать ничего не хочу, так как помимо математических трудов, он накатал несколько томов по философии. Опасно для мозга.

Признак Лейбница: Если члены знакочередующегося ряда убывают по модулю, то ряд сходится.

Или в два пункта:

1) Ряд является знакочередующимся.

2) Члены ряда убывают по модулю. То есть, .

Если выполнены оба условия, то ряд сходится.

Справка для тех, кто забыл, что такое модуль:

Что значит «по модулю»? Модуль, как мы помним со школы, «съедает» знак «минус». Вернемся к ряду . Мысленно сотрём все знаки и посмотрим только на числа. Мы увидим, что каждый следующий член ряда меньше, чем предыдущий. Таким образом, следующие фразы обозначает одно и то же:

– Члены ряда без учёта знака убывают.
– Члены ряда убывают по модулю.
– Члены ряда убывают по абсолютной величине.
Модуль общего члена ряда стремится к нулю:

Конец справки

Пример 1

Исследовать ряд на сходимость

В общий член ряда входит множитель , а значит, нужно использовать признак Лейбница

1) Проверка ряда на знакочередование. Обычно в этом пункте решения ряд расписывают подробно и выносят вердикт «Ряд является знакочередующимся».

2) Убывают ли члены ряда по модулю? Необходимо решить предел , который чаще всего является очень простым.

– члены ряда не убывают по модулю.

Вывод: ряд расходится.

Как разобраться, чему равно ? Очень просто. Как известно, модуль уничтожает минусы, поэтому для того, чтобы составить , нужно просто убрать с крыши проблесковый маячок. В данном случае общий член ряда . Тупо убираем «мигалку»:

Пример 2

Исследовать ряд на сходимость

Используем признак Лейбница:

1)
Ряд является знакочередующимся.

2) – члены ряда убывают по модулю.

Вывод: ряд сходится.

Всё бы было очень просто – но это еще не конец решения!

Если ряд сходится по признаку Лейбница, то также говорят, что ряд сходится условно.

Если сходится и ряд, составленный из модулей: , то говорят, что ряд сходится абсолютно.

Поэтому на повестке дня второй этапрешения типового задания – исследование знакочередующегося ряда на абсолютную сходимость.

Я не виноват – такая уж теория числовых рядов =)

Исследуем наш ряд на абсолютную сходимость.
Составим ряд из модулей – опять просто убираем множитель, который обеспечивает знакочередование:
– расходится (гармонический ряд).

Таким образом, наш ряд не является абсолютно сходящимся.
Исследуемый ряд сходится только условно.

Заметьте, что в Примере №1 второй этап не нужен, поскольку еще на первом шаге сделан вывод о том, что ряд расходится.

Собираем ведёрки, лопатки, машинки и выходим из песочницы. Рассматривать более содержательные примеры из кабины экскаватора.

Пример 3

Исследовать ряд на сходимость

Используем признак Лейбница:

1)
Данный ряд является знакочередующимся.

2) – члены ряда убывают по модулю.

Вывод: Ряд сходится.

Исследуем ряд на абсолютную сходимость:

Анализируя начинку ряда, приходим к выводу, что здесь нужно использовать предельный признак сравнения. Скобки в знаменателе удобнее раскрыть:

Сравним данный ряд со сходящимся рядом . Используем предельный признак сравнения.

Получено конечное число, отличное от нуля, значит, ряд сходится вместе с рядом .

Исследуемый ряд сходится абсолютно.

Готово.

Пример 4

Исследовать ряд на сходимость

Пример 5

Исследовать ряд на сходимость

Это примеры для самостоятельного решения. Полное решение и образец оформления в конце урока.

Как видите, знакочередующиеся ряды – это просто и занудно! Но не спешите закрывать страницу, всего через пару экранов мы рассмотрим случай, которых многих ставит в тупик. А пока еще пара примеров для тренировки и повторения.

Пример 6

Исследовать ряд на сходимость

Используем признак Лейбница.
1) Ряд является знакочередующимся.
2)

Члены ряда убывают по модулю.
Вывод: ряд сходится.

Обратите внимание, что я не расписал подробно члены ряда. Их всегда желательно расписывать, но от непреодолимой лени в «тяжелых» случаях можно ограничиться фразой «Ряд является знакочередующимся». Кстати, не нужно относиться к этому пункту формально, всегда проверяем (хотя бы мысленно) что ряд действительно знакочередуется. Беглый взгляд подводит, и ошибка допускается «на автомате». Помните об «обманках» , , , если они есть, то от них нужно избавиться, получив «обычный» ряд с положительными членами.

Исследуем ряд на абсолютную сходимость:

Очевидно, что нужно использовать радикальный признак Коши:

Таким образом, ряд сходится.

Исследуемый ряд сходится абсолютно.

Пример 7

Исследовать ряд на сходимость

Это пример для самостоятельного решения. Хммм… что-то я немного погорячился на счет простоты.

Нередко встречаются знакочередующиеся ряды, которые вызывают затруднения.

Пример 8

Исследовать ряд на сходимость

Используем признак Лейбница:
1) Ряд является знакочередующимся.

2)

Дело в том, что не существует стандартных обыденных приемов для решения подобных пределов. Куда стремится такой предел? К нулю, к бесконечности? Здесь важно, ЧТО на бесконечности растёт быстрее – числитель или знаменатель. Если числитель при растёт быстрее факториала, то . Если, на бесконечности факториал растёт быстрее числителя, то он, наоборот – «утянет» предел на ноль: . А может быть этот предел равен какому-нибудь отличному от нуля числу?

Попробуем записать несколько первых членов ряда:


Создается стойкое впечатление, что , но где гарантия, что при очень больших «эн» факториал не «обгонит» числитель и не утащит предел на ноль?

Обратимся к теории математического анализа, там давно всё доказано.

Справка

– Факториал растёт быстрее, чем любая показательная последовательность, иными словами: или . Да хоть миллион в степени «эн», это не меняет дела. Математики говорят, что факториал более высокого порядка роста, чем любая показательная последовательность.

– Факториал растёт быстрее, чем любая степенная последовательность или многочлен, иными словами: или . Вместо можно подставить какой-нибудь многочлен тысячной степени, это опять же не изменит ситуацию – рано или поздно факториал всё равно «перегонит» и такой страшный многочлен. Факториал более высокого порядка роста, чем любая степенная последовательность.

– Факториал растёт быстрее, чем произведение любого количества показательных и степенных последовательностей (наш случай).

Любая показательная последовательность растёт быстрее, чем любая степенная последовательность, например: , . Показательная последовательность более высокого порядка роста, чем любая степенная последовательность. Аналогично факториалу, показательная последовательность «перетягивает» произведение любого количества любых степенных последовательностей или многочленов:

Конец справки

Таким образом, второй пункт исследования (вы еще об этом помните? =)) можно записать так:
2) , так как более высокого порядка роста, чем .
Члены ряда убывают по модулю.

Вывод: ряд сходится.

Исследуем ряд на абсолютную сходимость:

А здесь уже работает старый добрый признак Даламбера:

Используем признак Даламбера:

Таким образом, ряд сходится.

Исследуемый ряд сходится абсолютно.

Разобранный пример можно решить другим способом.

Теорема: Если ряд сходится абсолютно, то он сходится и условно.

Наверное, вы уже заметили, что обратное неверно: если ряд сходится условно, то это еще не значит, что он сходится абсолютно.

Пример 8 «на бис» вторым способом.

Исследовать ряд на сходимость

Решение: Исследуем ряд на абсолютную сходимость:

Используем признак Даламбера:

только что печатал

Таким образом, ряд сходится.
По соответствующей теореме из абсолютной сходимости ряда следует и условная сходимость ряда.

Вывод: Исследуемый ряд сходится абсолютно.

Правда, при втором способе решения есть риск, что преподаватель оценит хитро… смекалку студента и забракует задание. А может и не забракует.

И напоследок пара примеров для самостоятельного решения. Один из той же оперы (перечитайте справку), но попроще. Другой для гурманов – на закрепление интегрального признака сходимости.

Пример 9

Исследовать ряд на сходимость

Пример 10

Исследовать ряд на сходимость

После качественной проработки числовых положительных и знакопеременных рядов с чистой совестью можно перейти к функциональным рядам, которые не менее монотонны и однообразны интересны.

Желаю успехов!

Решения и ответы:

Пример 4: Используем признак Лейбница:

1)
Данный ряд является знакочередующимся.
2)

Члены ряда не убывают по модулю.
Вывод: Ряд расходится.
Примечание: В данном примере неопределенность устраняется стандартным способом: делением числителя и знаменателя на «эн» в старшей степени. Старшая степень числителя: 1, старшая степень знаменателя:

Пример 5: Используем признак Лейбница.
1)
Ряд является знакочередующимся.
2) – члены ряда убывают по модулю.
Ряд сходится по признаку Лейбница.
Исследуем ряд на абсолютную сходимость:

Сравним данный ряд с расходящимся гармоническим рядом . Используем предельный признак сравнения:
– конечное число, отличное от нуля, значит, ряд расходится вместе с гармоническим рядом.
Исследуемый ряд сходится только условно.

Пример 7: Используем признак Лейбница.
1)
Ряд является знакочередующимся.
2) – члены ряда убывают по модулю.
Ряд сходится по признаку Лейбница.
Исследуем ряд на абсолютную сходимость:

Используем признак Даламбера:

Таким образом, ряд сходится.
Исследуемый ряд сходится абсолютно.

Примечание: Возможно, не всем понятно, как разложены факториалы. Это всегда можно установить опытным путём, возьмём и сравним какие-нибудь соседние члены ряда:
и , следующий член ряда к предыдущему:
и , следующий член ряда к предыдущему:

Пример 9: Используем признак Лейбница.
1)
Ряд является знакочередующимся.
2) – так как более высокого порядка роста, чем
Члены ряда убывают по модулю
Вывод: Ряд сходится.
Исследуем ряд на абсолютную сходимость:

Используем признак Даламбера:

Таким образом, ряд – сходится.
Исследуемый ряд сходится абсолютно.

Пример 10: Используем признак Лейбница.
1)
Ряд является знакочередующимся.
2) – члены ряда убывают по модулю.
Ряд сходится по признаку Лейбница.
Исследуем ряд на абсолютную сходимость:

Используем интегральный признак.

Подынтегральная функция непрерывна на .

Таким образом, ряд расходится вместе с соответствующим несобственным интегралом.

Исследуемый ряд сходится только условно.

 

 

Функциональные ряды. Степенные ряды.
Область сходимости ряда

Смех без причины – признак Даламбера

 

Вот и пробил час функциональных рядов. Для успешного освоения темы, и, в частности, этого урока, нужно хорошо разбираться в обычных числовых рядах. Следует хорошо понимать, что такое ряд, уметь применять признаки сравнения для исследования ряда на сходимость. Таким образом, если Вы только-только приступили к изучению темы или являетесь чайником в высшей математике, необходимо последовательно проработать три урока: Ряды для чайников, Признак Даламбера. Признаки Коши и Знакочередующиеся ряды. Признак Лейбница. Обязательно все три! Если есть элементарные знания и навыки решения задач с числовыми рядами, то справиться с функциональными рядами будет довольно просто, поскольку нового материала не очень и много.

На данном уроке мы рассмотрим понятие функционального ряда (что это вообще такое), познакомимся со степенными рядами, которые встречаются в 99%-ах практических заданий, и научимся решать распространенную типовую задачу на нахождение радиуса сходимости, интервала сходимости и области сходимости степенного ряда. Далее можно будет рассмотреть материал о сумме степенного ряда и разложении функций в степенные ряды.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.03 сек.)