АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ОПТИКА МИКРОСКОПА

Читайте также:
  1. III. Увеличение микроскопа.
  2. IV. Разрешающая способность микроскопа.
  3. Диаметр выходного зрачка микроскопа
  4. История микроскопа
  5. История микроскопа
  6. КОНТРОЛЬНАЯ РАБОТА ПО ТЕМЕ: « ГЕОМЕТРИЧЕСКАЯ И ФИЗИЧЕСКАЯ ОПТИКА»
  7. Области применения растрового электронного микроскопа
  8. Окуляры микроскопа
  9. Определение апертуры микроскопа
  10. Определение полного увеличения микроскопа.
  11. Принцип работы и устройство микроскопа

Оптические узлы и принадлежности обеспечивают основную функцию микроскопа – создание увеличенного изображения рассматриваемого объекта с достаточной степенью достоверности по форме, соотношению размеров и цвету. Кроме того, оптика микроскопа должна обеспечивать такое увеличение, контраст и разрешение элементов, которые позволят произвести наблюдение, анализ и измерение, соответствующие требованиям методик клинико-диагностической практики.

Основными оптическими элементами микроскопа являются: объектив, окуляр, конденсор. Вспомогательными элементами – осветительная система, оптовар, визуальные и фотонасадки с оптическими адаптерами и проективами.

Объектив микроскопа предназначен для создания увеличенного изображения рассматриваемого объекта с требуемым качеством, разрешением и цветопередачей.

Классификация объективов достаточно сложна и связана с тем, для изучения каких объектов предназначен микроскоп, зависит от требуемой точности воспроизведения объекта с учетом разрешающей способности и цветопередачи в центре и по полю видения.

Современные объективы имеют сложную конструкцию, количество линз в оптических системах доходит до 7—13. При этом расчеты базируются в основном на стеклах с особыми свойствами и кристалле флюорите или стеклах, аналогичных ему по основным физико-химическим свойствам.

По степени исправления аберраций выделяют несколько типов объективов:

Исправленные в спектральном диапазоне:

Монохроматические объективы (монохроматы) рассчитаны для применения в узком спектральном диапазоне, практически они хорошо работают в одной длине волны. Аберрации исправлены в узком спектральном диапазоне. Монохроматы были широко распространены в 60-х годах в период развития фотометрических методов исследования и создания аппаратуры для исследований в ультрафиолетовой (УФ) и инфракрасной (ИК)областях спектра.

Ахроматические объективы (ахроматы) рассчитаны для применения в спектральном диапазоне 486-656 нм. В этих объективах, устранены сферическая аберрация, хроматическая аберрация положения для двух длин волн (зеленого и желтого участков спектра), кома, астигматизм и частично сферохроматическая аберрация.

Изображение объекта имеет несколько синевато-красноватый оттенок. Технологически объективы достаточно просты – небольшое количество линз, технологичные для изготовления марки стекол, радиуса, диаметры и толщины линз. Относительно дешевые. Входят в комплект микроскопов, которые предназначены для рутинных работ и обучения.

В связи с простотой конструкции (всего 4 линзы) ахроматы имеют следующие достоинства:

- высокий коэффициент светопропускания, что необходимо при проведении фотометрических измерений и люминесцентных исследованиях;

- обеспечение трудно сочетаемых при расчете условий: большое рабочее расстояние при работе объектива с покровным стеклом, явно превышающим стандартнуютолщину и при этом - желание сохранения разрешающей способности, что необходимо при работе на инвертированных микроскопах.

К недостаткам можно отнеси то, что полевые аберрации в чистых ахроматах исправлены чаще всего на 1/2-2/3 поля, т.е. без перефокусировки возможно наблюдение в пределах 1/2-2/3 по центру видения. Это увеличивает время наблюдения, т.к. требует постоянной перефокусировки на край поля.

Апохроматические объективы. У апохроматов спектральная область расширена и ахроматизация выполняется для трех длин волн. Кроме хроматизма положения, сферической аберрации, комы и астигматизма, достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация.

Развитие этот тип объективов получил после того, как в оптическую схему объектива стали вводится линзы из кристаллов и специальных стекол. Количество линз в оптической схеме апохромата доходит до 6. По сравнению с ахроматами, апохроматы обычно имеют повышенные числовые апертуры, дают четкое изображение и точно передают цвет объекта.

Полевые аберрации в чистых апохроматах исправлены даже меньше чем у ахроматов, чаще всего на 1/2 поля, т.е. без перефокусировки возможно наблюдение в пределах 1/2 по центру видения.

Апохроматы обычно применяются при особо тонких и важных исследованиях и особенно там, где требуется качественная микрофотография.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)