АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Химические реакции аминокислот

Читайте также:
  1. II. Вывод и анализ кинетических уравнений 0-, 1-, 2-ого порядков. Методы определения порядка реакции
  2. III. Химические свойства альдегидов и кетонов
  3. а) наименьшая частица вещества, которая сохраняет его химические свойства.
  4. А. Наследственный дефицит ферментных систем, участвующих в активном транспорте определенных аминокислот.
  5. А. Фотохимические тормозные условные реакции
  6. А. Фотохимические условные реакции
  7. Алхимические операции.
  8. Аналитические реакции, их характеристики
  9. Аффективные реакции
  10. Аффективные реакции
  11. Б) Химические показатели
  12. Б. Кожно-гальванические тормозные условные реакции

Аминокислоты могут участвовать во многих реакциях с участием
a-амино, a-карбокси и различных функциональных R-групп. Эти реакции подробно рассмотрены в методическом указании «Химия и биохимия аминокислот и полипептидов». Отметим лишь некоторые реакции, имеющие особо важное значение.

Реакция с нингидрином (рН>5) лежит в основе обнаружения и количественного определения аминокислот и белков.

Интенсивность образующейся окраски, оценивают, измеряя поглощение света при длине волны 540 нм (для пролина – 440 нм).

Для идентификации аминокислот служит также получение: 1) фенилтиогитантионовых (ФТТ) производных аминокислот, поглощающих в УФ области; 2) дансильных флуоресцирующих производных (ДНФ) и т.д.

Для пищевиков представляет интерес реакция аминокислот с соединениями, содержащими карбонильную группу С=О, с различными альдегидами и восстанавливающими сахарами (глюкозой, рибозой и отчасти фруктозой). В результате этой реакции происходит разложение как исходной аминокислоты, так и реагирующего с ней восстанавливающего сахара.

Альдегиды, образовавшиеся из аминокислот, обладают определенным запахом, от которого в значительной степени зависит аромат многих пищевых продуктов.

Лейцин дает запах ржаного хлеба, глицин – карамели, фурфурол – запах зеленого яблока, гидроксиметилфурфурол – запах меда.

Далее фурфурол и гидроксиметилфурфурол реагируют с новой молекулой аминокислоты в результате образуются темноокрашенные соединения – меланоидины. Образование их объясняет наблюдаемое потемнение многих пищевых продуктов во время их изготовления. Особенно интенсивно реакция между аминокислотами и восстанавливающими сахарами происходит при повышенной температуре, имеющей место во время сушки пищевых продуктов, овощей, фруктов, молока, солода. Образование золотисто-коричневой корочки, специфического аромата и вкуса хлеба зависят в основном от меланоидиновых реакций, происходящих при выпечке.

Пептиды.

Аминокислоты соединяются друг с другом ковалентной пептидной связью. Образование ее происходит за счет a-аминогруппы (–NH2) одной аминокислоты и a-карбоксильной (–СООН) группы другой с выделением молекулы воды.

В результате реакции поликонденсации можно получить соединения, составленные из многих аминокислотных остатков – полипептиды. При написании формулы линейных пептидов с известной последовательностью аминокислотных остатков начинают с N-конца (на конце пептида находится свободная a-аминогруппа), используя сокращенные обозначения аминокислот. Названия пептидов складываются из названий соответствующих аминокислот с суффиксом – ил, начиная с N-концевого остатка, – название С-концевой аминокислоты (содержит свободную a-карбоксильную группу) сохраняется. Например, аргинил-аланил-глицин-глутамил-лизин.

Каждый пептид содержит только одну свободную a-амино- и
a-карбоксильную группу, которые находятся на концевых остатках аминокислот. Эти группы и R-группы некоторых аминокислот могут быть ионизированы, поэтому пептиды могут нести заряды, и могут быть электронейтральными (т.е. иметь изоэлектрическую точку (ИЭТ). Это свойство пептидов используется для их разделения методами ионной хроматографии и электрофореза. Как и другие соединения, пептиды могут вступать в химические реакции, определяемые наличием у них групп -NH2, -COOH, и R групп-аминокислот. Одной из важных реакций для пептидов является реакция гидролиза. Реакция гидролиза всех пептидных связей путем кипячения растворов пептидов в присутствии сильной кислоты или щелочи используется при определении их аминокислотного состава и состава белков.

Гидролиз пептидных связей может быть осуществлен также действием некоторых ферментов, которые расщепляют пептидные связи избирательно, с образованием коротких пептидов. Например трипсин гидролизует связи образованные карбоксильными группами лизина, аргинина; химотрипсин-карбоксильными группами фенилаланина, тирозина, триптофана. Такой избирательный анализ оказывается очень полезным при установлении аминокислотной последовательности белков и пептидов.

Кроме пептидов, образующихся в результате частичного гидролиза молекул белка, существует много пептидов, встречающихся в живых организмах как свободные соединения.

Многие природные пептиды отличаются по своей структуре от белков; такие пептиды имеются во всех типах организмов. В структурном отношении пептиды небелковой природы весьма разнообразны: отличаются по размерам, наличию циклических структур, разветвленности, наличию D- и
a-аминокислот и, в некоторых отдельных случаях, по уникальному строению пептидной связи. Исходя из принципа взаимосвязи структуры и функций, биологические функции таких пептидов также очень многоплановы. Приведем несколько интересных примеров.

Карнозин и Ансерин. Эти дипептиды найдены в мышечных тканях позвоночных, в том числе и в мышцах человека. Оба они содержат b-аланин – структурный изомер a-аланина.

Эти дипептиды служат для поддержания постоянного рН в клетках мышц, т.е действуют как буферы, также они участвуют в сокращении мышц, в процессах окислительного фосфорилирования т.е в образовании АТФ.

Глутатион (g-глутамилцистеинилглицин) – трипептид, присутствует во всех животных, растениях и микроорганизмах.

Отличительная структурная особенность глутатиона, состоит в том, что глутаминовая кислота в составе этого пептида представляет для образования пептидной связи g-карбоксильную (а не a-карбоксильную группу). Существуют две формы глутатиона восстановленная (SH-глутатион) и окисленная (S-S-глутатион). Взаимопревращения одной формы в другую катализируется ферментом глутатионредуктазой.

В настоящее время известны лишь некоторые из физиологических функций глутатиона:

1) участие в транспорте аминокислот через клеточные мембраны;

2) поддержание восстановленного состояния железа (Fe+2) в гемоглабине;

3) входит в состав фермента глутатионпероксидазы, который защищает клетки от разрушающего действия Н2О2.

4) участвует в детоксикации ряда чужеродных для живой клетки соединений (галогенсодержащие алифатические или ароматические углеводороды) переводит их в водорастворимые соединения, которые выводятся из организма почками.

5) восстановленный глутатион защищает SH-группы белка от окисления, сам при этом превращается в окисленный.

Глутатион влияет и на технологические свойства зерна и муки. Восстановленный глутатион вызывает восстановление и разрыв дисульфидных связей в молекуле белков клейковины, т.е разрушает ее. Тесто из такой муки обладает плохими структурно-механическими свойствами), оно ослабляется, расплывается из него нельзя получить хлеб нормального качества.) Много глутатиона в старых дрожжах и зародышах зерновых, что следует учитывать в хлебопечении. Восстановленный глутатион способен активировать протеиназы (ферменты ращепляющие белки) зерна и муки, при этом начинается усиленно протекать протеолиз белков клейковины и вызванное им разжижение теста. Глутатион способствует накоплению в пиве азотистых соединений сравнительно большой молекулярной массы, что вызывает образование мути в пиве и ухудшает его потребительские свойства.

С 1981г. разрешено использовать в качестве низкокалорийной добавки для придания продуктам сладкого вкуса аспартам (торговое название). Аспартам в 200 раз слаще сахара и представляет собой метиловый эфир дипептида, состоящего из остатков аспарагиновой кислоты и фенилаланина.


У млекопитающих (в том числе у человека) вырабатываются пептиды обладающие гормональным регуляторным действием, причем диапазон приложения их действия и эффективность в организме очень разнообразны. Например, два циклических нонапептида вырабатывает гипофиз. Окситоцин стимулирует сокращение матки у беременных самок и выделение молока у кормящих самок. Вазопрессин обладает сильным антидиуретическим действием и участвует в контроле кровяного давления. Соматостатин – один из гормонов гипоталамуса – ингибирует синтез гормона роста человека в гипофизе, что приводит к задержке роста и развития тела.

В 1975г. открыта группа пептидов, которые оказывают влияние на передачу нервных импульсов. Их также называют опиатными пептидами, поскольку механизм их действия сходен с механизмом действия морфина и других опиоидов. Они присутствуют в очень малых количествах, как у позвоночных, так и у беспозвоночных. Эти вещества обладают сильным обезболивающим действием, а также участвуют в регуляции настроения и поведения.

Белки.

Полипептиды, содержащие больше 51 аминокислоты, относятся к белкам. Белки входят в состав всех клеток и тканей живых организмов. Около 50% сухого вещества клетки приходится на белки.

Белки характеризуются определенным элементарным составом. Химический анализ показал наличие во всех белках углерода (50-55%), кислорода (21-24%), азота (15-18%), водорода (6-7%), серы (0,3-2,5%). В составе отдельных белков обнаружены также фосфор, йод, железо, медь и некоторые другие макро и микроэлементы, в различных, часто очень малых количествах.

Белками (протеинами, от греческого protas – первый, важнейший) называют высокомолекулярные природные полимеры, молекулы которых построены из остатков аминокислот.

Поразительно то, что все белки во всех организмах построены их одного и того же набора – 20-ти аминокислот, каждая из которых не обладает никакой биологической активностью. Что же тогда придает белку специфическую активность, одним ферментативную, другим, гормональную, третьим защитную и т.д.

Ответ довольно прост: белки отличаются друг от друга тем, что каждый имеет свою характерную для него аминокислотную последовательность.

Аминокислоты – это алфавит белковой структуры; соединив их в различном порядке можно получить бесконечное число последовательностей, а, следовательно, и бесконечное количество разнообразных белков, выполняющих различные биологические функции.

1. Ферментативная (каталитическая). В биологических системах почти все реакции катализируются специфическими белками – ферментами. В настоящее время открыто около 300 различных ферментов, каждый из которых служит катализатором определенной биологической реакции. Синтез и распад веществ, их регуляция, перенос химических групп и электронов от одного вещества к другому осуществляется с помощью ферментов.

2. Строительная, структурная функция. Белки образуют основу протоплазмы любой живой клетки, в комплексе с липидами они являются основным структурным материалом всех клеточных мембран всех органелл.

3. Двигательная функция. Любые формы движения в живой природе (работа мышц, движение ресничек и жгутиков у простейших, движение протоплазмы в клетке и т.д.) осуществляется белковыми структурами.

4. Транспортная функция. Перенос различных молекул, ионов осуществляется специфическими белками. Например, белок крови гемоглобин переносит кислород к тканям. Перенос жирных кислот по организму происходит с участием другого белка крови-альбумина.

5. Регуляторная функция. Регуляция углеводного, белкового, липидного обменов осуществляется с помощью гормонов, которые по своему строению относятся к белкам (инсулин) или пептидам (окситоцин, вазопрессин и др.).

6. Защитная – эту функцию выполняют иммуноглобулины (антитела). Они обладают способностью обезвреживать бактерии, вирусы, чужеродные белки, попавшие в организм извне. Процесс свертывания крови, защищающий организм от ее потери, основан на превращениях белка – фибриногена. Кератин – белок волосяного защитного покрова.

7. Фоторецепторные белки: например, родопсин, участвующий в зрительных процессах.

8. Резервные белки используются, как запасной материал для питания развивающегося зародыша и новорожденного организма – это белки семян зернобобовых культур, альбумин – яичный белок, казеин молока. Ферретин – белок животных тканей в котором запасено железо. Резервные белки являются важнейшими компонентами растительной и животной пищи.

Имеется много других белков, функции которых довольно необычны. Например, монеллин – белок, выделенный из африканского растения, имеет очень сладкий вкус. Его изучают как вещество нетоксичное и не способствующее ожирению, с целью использования в пищу вместо сахара. Плазма крови некоторых антарктических рыб содержи белок, обладающий свойствами антифриза.

Технология многих производств основана на переработке белков, изменении их свойств; в кожевенной промышленности, при выделке мехов, натурального шелка, выработке сыров, хлеба и т.д.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)