АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

МЕНЕДЖМЕНТ. 1.1.Навука як від пазнання і як феномен культуры

Читайте также:
  1. Административные, социально-психологические и воспитательные методы менеджмента
  2. Адміністративні методи менеджменту
  3. Азиатский стиль менеджмента
  4. Анализ основных тенденций в практике глобального стратегического инновационного менеджмента
  5. АНАЛИЗ ФУНКЦИЙ СПЕЦИАЛИСТОВ ПО СТРАТЕГИЧЕСКОМУ МЕНЕДЖМЕНТУ И ПОЛНОМОЧИЙ ОРГАНОВ УПРАВЛЕНИЯ ОРГАНИЗАЦИИ, ПРИНИМАЮЩИХ СТРАТЕГИЧЕСКИЕ РЕШЕНИЯ.
  6. Аннотация на учебное пособие «Экологический менеджмент»
  7. АНТИКРИЗИСНЫЙ МЕНЕДЖМЕНТ
  8. Антропоцентрическая концепция менеджмента
  9. Базисные концепции менеджмента
  10. Базовые концепции и гипотезы финансового менеджмента
  11. Базовые концепции финансового менеджмента
  12. Базовые концепции финансового менеджмента

Прадмова

1.Уводзіны

1.1.Навука як від пазнання і як феномен культуры

1.2.Структура навуковага пазнання

1.2.1.Эмпірычны ўзровень навуковага пазнання

1.2.2.Тэарэтычны ўзровень навуковага пазнання

1.2.3.Метатэарэтычны ўзровень навуковага пазнання

1.2.4.Дысцыплінарная структура навукі

1.3.Гістарычная эвалюцыя разумення прыроды ў філасофскай і навуковай культуры

1.4.Агульная характарыстыка асноўных прыродазнаўчых дысцыплін

1.4.1.Фізіка

1.4.2. Касмалогія

1.4.3. Хімія

1.4.4. Біялогія

1.5. Прыродазнаўства і фармальныя навукі (логіка, матэматыка)

1.6. Прыродазнаўства і тэхніка

1.7. Прыродазнаўства і гуманітарыстыка

2.Гістарычнае станаўленне прыродазнаўства сучаснага тыпу

2.1. Гістарычная дынаміка навукі: асноўныя падыходы і праблемы

2.2. Асноўныя этапы станаўлення прыродазнаўства сучаснага тыпу

2.3. Гістарычнае станаўленне фізікі і касмалогіі сучаснага тыпу

2.4. Гістарычнае станаўленне хіміі сучаснага тыпу

2.5. Гістарычнае станаўленне біялогіі сучаснага тыпу

3. Класічнае прыродазнаўства

3.1. Агульная характарыястыка класічнага прыродазнаўства

3.2. Класічная механіка і яе гістарычнае значэнне

3.3. Асноўныя характарыстыкі класічнай касмалогіі

3.4. Класічная тэрмадынаміка

3.5. Гістарычная эвалюцыя класічных прыродазнаўчых уяўленняў пра святло

3.6. Класічная электрадынаміка

3.7. Развіццё хіміі ў ХІХ стагоддзі

3.8. Рэвалюцыйныя біялагічныя адкрыцці ў ХІХ ст.

3.8.1. Эвалюцыйная тэорыя Ч.Дарвіна

3.8.2. Клетачная тэорыя

3.8.3. Тэорыя спадчыннасці Г.Мендэля

3.9. Крызіс класічнага прыродазнаўства

4. Сучаснае прыродазнаўства

4.1. Агульная характарыстыка сучаснага прыродазнаўства

4.2. Навуковая рэвалюцыя пачатку ХХ стагоддзя: генезіс рэлятывісцкай фізікі

4.3. Усеагульная тэорыя адноснасці і станаўленне сучаснай касмалогіі

4.4. Навуковая рэвалюцыя пачатку ХХ стагоддзя: распрацоўка асноў квантавай фізікі

4.5.Квантавая фізіка і рэвалюцыя ў сучаснай хіміі

4.6.Праблема ўзаемадачыненняў квантавай і рэлятывісцкай фізікі

4.7.Тэорыя Вялікага Выбуху як Стандартная мадэль сучаснай касмалогіі

4.8.Стандартная мадэль у фізіцы элементарных часціц

4.9.Прынцыпы сіметрыі і захавання ў сучаснай фізіцы

4.10.Праблема грунтоўных сусветных канстант

4.11.Праблема існасці жыцця ў сучаснай філасофіі і навуцы

4.12.Праблема ўзнікнення жыцця на Зямлі і яе аналіз у сучаснай навуцы

4.13.Узнікненне і развіццё генетыкі

4.14.Сінтэтычная тэорыя эвалюцыі. Эвалюцыйная біялогія ў другой палове ХХ – напачатку ХХІ стст.

4.15.Прыродазнаўчыя навукі ў кантэксце вывучэння чалавека

4.15.1.Праблема антрапасацыягенезу і яе прыродазнаўчыя аспекты

4.15.2.Праблема суадносінаў біялагічнага і духоўнага ў чалавеку

4.16.Біяэтыка як міждысцыплінарны пазнавальны кірунак

4.17.Вучэнне пра самаарганізацыю

Замест заключэння

Літаратура

Слоўнік асноўных паняццяў


[1] Намалагічна – гэта значыць на ўзроўні законаў прыроды.

[2] Тут і далей пераклад мой. – А.Б. Слова “выпадак” пададзена курсівам у тэксце арыгінала.

[3] Канкрэтныя прыклады такіх пазнавальных сітуацый у галіне прыродазнаўства разглядаюцца ніжэй (4.7; 4.8).

[4] Неабходна адзначыць, што ў розных навуках дамінуюць розныя тыпы і формы абгрунтавання вынікаў даследчай працы: у логіцы і матэматыцы пераважае дэдуктыўнае абгрунтаванне, а ў прыродазнаўстве – эксперыментальна-індуктыўнае.

[5] Пры вытлумачэнні аб’ектыўнасці навуковых ведаў як інтэрсуб’ектыўнасці праблема губляе ў пэўнай ступені сваю вастрыню. У такім выпадку згаданая аб’ектыўнасць разумеецца як адпаведнасць ведаў выпрацаваным навуковай супольнасцю ў пэўным гістарычным, культурным, светапоглядным кантэксце і па сутнасці гэтым кантэкстам вызначаным нормам і крытэрыям.

[6] Выраз “ad hoc” азначае ў перакладзе з лаціны “для гэтага”.

[7] Маецца на ўвазе дваццатае стагоддзе.

[8] Тэрмін “універсум” этымалагічна ўзыходзіць да лацінскага слова “universitas”, уведзенага ў навуковы зварот Цыцэронам (106-43 да н.э.), які ўжыў яго падчас перакладу платонаўскага “Тымея” менавіта ў сэнсе “цэлае”, “Сусвет”, “усё” (як аналаг выразу “τὸ πᾶν”) [46, т.11, c.212].

[9] Неабходна адзначыць, што ўспрыманне гіганцкіх касмічных структур мае свае асаблівасці: яны ніколі не назіраюцца ў актуальным стане. Адзіная крыніца інфармацыі пра іх – гэта іх выпраменьванне, а яно можа распавесці нам толькі пра мінулае гэтых структур. Прычынай такога стану рэчаў з’яўляецца немагчымасць імгненнай перадачы на адлегласць фізічнага сігналу.

[10] У навуковай літаратуры даводзіцца ў дадзенай сувязі, што згаданая экстрапаляцыя фізічных тэорый на космас у цэлым азначае разам з тым досыць эфектыўную праверку кожнай з іх і іх узаемнай спалучальнасці [34, т.2, c.866]. Касмалогія фігуруе, такім чынам, як своеасаблівы палігон для іх апрабацыі. Пры гэтым, аднак, нельга забывацца на тое, што дадзеным момантам узаемадачыненні абедзвюх дысцыплін ні ў якім разе не вычэрпваюцца.

[11] За згаданай праблемай хаваецца, магчыма, больш глыбокая, звязаная са светабачаннем, уласцівым навуцы сучаснага тыпу ўвогуле. Менавіта на яе звярнулі ўвагу І.Прыгожын і І.Стэнгерс, давёўшы, што класічнаму прыродазнаўству было адпачаткова ўласціва разглядаць “свет як гамагенны, адкуль вынікала, што лакальнае эксперыментаванне можа адкрыць глабальную праўду. Самыя простыя феномены, якія вывучае навука, могуць трактавацца, такім чынам, як ключ да разумення прыроды ў цэлым” [75, c.44].

[12] Блізкасць філасофіі і касмалогіі мае рознапланавы, шматаспектны характар. Сучасны французскі філосаф Д.Параш’я, напрыклад, падкрэслівае ў дадзенай сувязі, што згаданая блізкасць абумоўліваецца найперш высокай ступенню гіпатэтычнасці касмалагічных ведаў [70, c.119].

[13] Другая яго частка, з аднаго боку, выглядае агульнавядомай і ў гэтым плане, як падаецца, не патрабуе тлумачэнняў. З іншага боку, аднак, “логас” уяўляе сабой складаную і багатую на змест, на інтэрпрэтацыйныя магчымасці філасофскую катэгорыю [21, c.54], адпаведны аналіз якой не ўваходзіць у кола задач дадзенага дапаможніка.

[14] Тут гаворка вядзецца пра прыродазнаўчы падыход, хоць пры пэўных умовах непасрэдна матэматычны аспект можа выявіцца і ў філасофскім разглядзе адпаведнай праблематыкі (у рамках натурфіласофскага праекта, аўтар якога арыентуецца на прыродазнаўчыя навукі, працуючы на мяжы філасофіі і прыродазнаўства, як, напрыклад, згаданы вышэй Д.Параш’я).

[15] Прыводзячы згаданыя палажэнні, выпрацаваныя ў рамках пазітывісцкай традыцыі, К.Кёхі указвае на іх неадпаведнасць сутнасці і асаблівасцям біялагічнага пазнання [56, c.51-53].

[16] У англасаксонскай культурнай і моўнай прасторы яно набыло па сутнасці сінанімічнае са словам “тэхніка” значэнне, якое пашырылася затым і на іншыя культурныя асяродкі, хоць часам пільныя да тэрміналагічных нюансаў філосафы выказваюць сваю нязгоду з такім станам спраў [40, c.364].

[17] У гістарычна-філасофскім плане выраз “ідыяграфія” паўстаў у кантэксце інтэлектуальнай рэцэпцыі лейбніцаўскай філасофскай праграмы. З ім было звязана патрабаванне дакладнай перадачы ідэй праз пісьмовыя знакі [46, т.4, c.157].

[18] Тэрмін “наматэтычны” (як ад’ектывацыя назоўніка “наматэтыка”) узыходзіць да творчасці Канта, які ўжываў яго ў сінанімічным да тэрміна “заканадаўчы” сэнсе (у дачыненні да заканадаўчай здольнасці розуму) [46, т.6, c.896].

[19] Неабходна адзначыць шматзначнасць дадзенага тэрміна ў Т.Куна, на якую справядліва ўказвалі яго крытыкі і дзеля пераадолення якой ён увёў пазней паняцце дысцыплінарнай матрыцы як сістэмы грунтоўных пазнавальных арыенціраў, характэрных для пэўнай навуковай супольнасці [57, c.182].

[20] Паняцце імпэтусу будзе разгледжана ніжэй (гл.2.3).

[21] У такіх умовах міф цалкам заканамерна пачаў страчваць непадзельнае панаванне ў духоўным жыцці.У выніку адпаведнага працэсу, аднак, як лічыць шмат хто з філосафаў, ён не страціў ні сваёй легітымнасці, ні адведзенага менавіта яму месца ў сістэме духоўных формаў і спосабаў пазнання [46, т.6, c.300, 314-316].

[22] С.Хокінг і Л.Млодзінаў пішуць у дадзенай сувязі, што Архімед не характарызаваў вынікі сваіх даследаванняў як адкрыццё законаў і “не тлумачыў іх праз указанне на назіранні і эксперыменты. Замест гэтага ён ставіўся да іх так, нібы яны былі чыста матэматычнымі палажэннямі ў аксіяматычнай сістэме, падобнай да той, якую стварыў Эўклід для геаметрыі” [43, c.24].

[23] Сонца, на думку Анаксімандра, – найдалейшы ад Зямлі касмічны аб'ект, адлегласць паміж імі ў 27 разоў большая, чым яе памеры (хутчэй за ўсё дыяметр асновы). Найбліжэйшымі да нас нябеснымі целамі з’яўляюцца зоркі, і адлегласць да іх большая за зямныя памеры ў 9 разоў. Паміж Сонцам і зоркамі знаходзіцца Месяц. Ён роўнааддалены ад сваіх “суседзяў”. Адлегласць ад яго да Зямлі, такім чынам, большая за памеры апошняй у 18 разоў.

[24] Прадстаўнікі філасофскай школы, названай так паводле горада (Элея) на поўдні Апенінскага паўвострава, які быў цэнтрам іх інтэлектуальнай дзейнасці.

[25] Якую ролю пры гэтым кожны з іх выканаў, не зусім ясна. Магчыма, Леўкіп стварыў асновы тэорыі, а Дэмакрыт дэталёва і сістэматычна распрацаваў яе [72, c.179].

[26] Дадзены момант істотным чынам адрознівае пазіцыю Арыстоцеля ад філасофіі і касмалогіі Платона, які даводзіў пра трансцэндэнтны характар існасці рэчаў, што належаць да пачуццёвага свету. У сувязі з гэтым, аднак, неабходна адзначыць, што суадносіны іх поглядаў былі (і застаюцца) прадметам ажыўленай палемікі ў гістарычна-філасофскай літаратуры. У яе рамках нярэдка выказвалася меркаванне, што адрозненні паміж імі ў канчатковым выніку не такія сур’ёзныя, як падаецца на першы погляд [33, c. 8-9].

[27] Тэрмін “механіка” бярэцца тут у сучасным сэнсе. У класічнай Антычнасці ён абазначаў уменне з дапамогай спецыяльных прыстасаванняў прывесці аб’ект у рух, які па сутнасці не стасуецца з яго прыродай. Выраб згаданых прыстасаванняў таксама разглядаўся як прыналежны да акрэсленай дадзеным тэрмінам сферы [46, т.5 с.951].

[28] Яго тлумачэнне дадзенай з’явы, згодна з якім аб’екты падчас падзення, набліжаючыся да свайго натуральнага месца, “адчуваюць усё большую радасць і таму паскараюцца”, выклікала здзеклівую заўвагу С.Хокінга і Л.Млодзінава, што яно сёння падаецца больш прыдатным для апісання “паводзінаў пэўных людзей, чым неадушаўлёных прадметаў” [43, c.28].

[29] Арыстоцель нарадзіўся ў горадзе Стагіра, таму яго нярэдка завуць Стагірытам.

[30] Уяўленне пра сферычную форму Зямлі не было новым для антычнай філасофіі і навукі: існуе меркаванне, што яно ўзыходзіць да піфагарэйскага вучэння. Пры гэтым адзначаецца, што Піфагор прыняў яго на падставе пераканання ў геаметрычнай дасканаласці сферычных утварэнняў [26, c.480].

[31] Дадзены момант зусім не азначае, што яны ў гэты час успрымаліся цалкам і поўнасцю некрытычна.

[32]У папярэднім параграфе ўжо падкрэсліваўся высокі ўзровень развіцця александрыйскай навукі, як і яе блізкасць да сучаснага прыродазнаўства. Вышэй было адзначана таксама, што некаторыя з яе тэарэтычных дасягненняў у галіне фізікі былі ўключаны ў склад новай сістэмы ведаў.

[33] Ідэя вярчэння Зямлі вакол сваёй восі была прапанавана ў антычнай навуцы да Арыстарха. Упершыню яе выказаў хутчэй за ўсё Гераклід Пантыйскі (каля 390 – пасля 322 да н.э.) [78, c.170].

[34] Ён указваў, што дадзены феномен абумоўліваецца рознай хуткасцю прамянёў святла (дадзены тэрмін, зрэшты, быў уведзены менавіта ім) у розных матэрыялах [78, c.321].

[35] Падобныя ідэі былі выказаны ў VI cт. Янам Філапонам (каля 490 – каля 570), выбітным познеантычным філосафам і навукоўцам, прадстаўніком хрысціянскай традыцыі [46, т.7, c.938].

[36] Ідэя Бурыдана, паводле якой Бог надае планетам імпэтус, для аслаблення і знікнення якога няма ніякіх падстаў, досыць блізкая па сваім характары да дэістычных уяўленняў творцаў навукі сучаснага тыпу.

[37] Актыўна ўжываў дадзенае паняцце і Галілей, у якога яно не азначае прычыны руху ці інерцыі, а выступае як іх выяўленне [26, c.504]. Увогуле, цалкам правамерна весці гаворку пра тое, што ў гісторыі паняцця “імпэтус” адлюстроўваецца гісторыя ўзнікнення навукі сучаснага тыпу і яе першай формы, класічнай механікі.

[38]Калі разглядаць адпаведны стан рэчаў звышпедантычна (як гэта робяць некаторыя гісторыкі навукі), дык трэба ўказаць, што фармальна каперніканская мадэль мела не геліяцэнтрычны, а геліястатычны характар: нерухомае Сонца і цэнтр, вакол якога рухаецца Зямля, крыху не супадаюць [Co, c.59].

[39]У гэтым факце бачыцца, як правіла, сведчанне ўплыву платанічнай філасофіі на даследаванні Каперніка, хоць мелі месца і спробы растлумачыць яго на аснове навуковых, фізічных поглядаў выбітнага польскага астранома [24, c.113].

[40]У першым законе абагульняюцца зробленыя адносна руху Марса высновы, а згодна з другім хуткасць планет змяняецца такім чынам, што праведзены ад Сонца да той ці іншай планеты радыўс-вектар за роўныя прамежкі часу пакрывае роўныя плошчы.

[41] Варта адзначыць, што што менавіта ў сувязі са сваім трэцім законам Кеплер упершыню ўжыў паняцце закона прыроды ўвогуле [72, c.470].

[42]Дадзеная задача спрашчаецца ў тым плане, што для яе рашэння дастаткова дакладна вызначыць адлегласць ад Сонца да адной планеты. Перыяды абарачэння планет вызначаюцца досыць проста [78, c.462].

[43] Кінематыка – раздзел механікі, у якім апісваецца рух без высвятлення яго прычын. У адрозненне ад яе дынаміка даследуе рух у сувязі з яго прычынамі – сіламі. У абагульненым плане можна сказаць, што яна вывучае разнастайныя праявы дзеяння сіл.

[44] У іншым выпадку ён наўрад ці здолеў бы ўзняцца да творчай і плённай навукова-даследчай дзейнасці.

[45] У барацьбе за перамогу геліяцэнтрычнай мадэлі Галілей не абмяжоўваўся навуковымі аргументамі. Як даводзілася вышэй, ён імкнуўся пераканаць (пры дапамозе герменеўтычных працэдур, задзейнічаных для тлумачэння тэксту Бібліі) царкоўныя ўлады і грамадства ўвогуле ў тым, што вучэнне Каперніка поўнасцю стасуецца з хрысціянскім светапоглядам.

[46] У сучаснасці такое спалучэнне сустракаецца надзвычай рэдка.

[47] Гэтыя прынцыпы будуць разглядацца ў параграфе, прысвечаным класічнай механіцы.

[48] Механіка Р.Дэкарта “была добра прынята ў Кембрыджскім універсітэце, і яе выкладалі студэнтам, сярод якіх быў у той час І.Н’ютан” [78, c.472].

[49] Выключэннем з гэтага правіла з’яўляецца “Гісторыя хіміі” Б.Бенсод-Вінсен і І.Стэнгерс, у якой даецца абгрунтаваная і глыбокая крытыка падзелу гістарычнага развіцця хімічных ведаў на змрочны данавуковы і прасякнуты святлом рацыянальнасці навуковы яго перыяды [20, c.5-8].

[50] Як пішуць І.Прыгожын і І.Стэнгерс, “адвечная мудрасць заўжды звязвала хімію з “навукай пра агонь”” [75, c.103].

[51] Ён азначае, магчыма, “большы, чым Цэльс”. Цэльс (каля 25 да н. э. – каля 50 н. э.) – старажытнарымскі навуковец і пісьменнік, з даробку якога захаваўся падрабязны расповед пра гістарычнае развіццё і сучасны яму стан медыцыны.

[52] Таму нічога дзіўнага няма ў тым, што прадстаўнікі традыцыйнай алхіміі працягвалі ў гэты час і пазней карыстацца рукапісамі і пісалі не для друку [20, c.34].

[53] Пра віталізм гл. ніжэй.

[54]Гаворка ідзе пра дзеда Ч.Дарвіна.

[55]І творчы, і жыццёвы шлях Ламарка быў адзначаны пячаткай трагізму [78, c.547].

[56] “Гіпотэзы не выдумляю” (лац.).

[57] Гэтыя словы пададзены курсівам у тэксце арыгінала.

[58] Змест касмаганічных гіпотэз І.Канта і П.С.дэ Лапласа падаецца тут на аснове адпаведнага артыкула шматтомнага “Гістарычнага філасофскага слоўніка”, выдадзенага пад рэдакцыяй Ё.Рытэра, К.Грундэра і Г.Габрыэля [46, т.4, с.694].

[59] Камета Галея рэгулярна з’яўлялася ў Сонечнай сістэме і потым (апошні раз у 1986 г.) – у строгай адпаведнасці з н’ютанаўскімі законамі, кожны раз нагадваючы нам пра веліч навукі і яе геніяльных творцаў.

[60] Тэрмін “энергія” канчаткова замацаваўся для абазначэння здольнасці фізічнага аб’екта выконваць работу пры канцы ХІХ ст. [26, c.343].

[61] Д.Джоўль быў прафесійным піваварам. Абраўшы затым шлях прыватнага навукоўца, ён вялікую частку сваёй маёмасці выдаткаваў на фізічныя даследаванні [49, c.321].

[62] Менавіта так характарызаваў згаданы працэс (працэс рассейвання часткі энергіі) лорд Кельвін, які таксама даследаваў яго [75, c.115].

[63] Другі пачатак тэрмадынамікі можа быць сфармуляваны таксама як забарона вечнага рухавіка другога роду, г. зн. такой машыны, адзіным вынікам функцыянавання якой “было б толькі выкананне механічнай работы за кошт адымання цеплыні ад якога-небудзь цела” [17, с.98].

[64] Хуткасць святла была вызначаная дацкім астраномам О.Ромерам (1644-1710) у 1775 годзе ў выніку назіранняў за спадарожнікамі Юпітэра. У літаратуры падаюцца розныя лікавыя значэнні атрыманай ім велічыні: 215000 км/с [77, c.606], 193000 км/с [78, c.497]. Ва ўсіх выпадках, аднак, яны не адпавядаюць таму яе значэнню, што ўстаноўлена сучаснай навукай.

[65] Да Н’ютана дамінаваў арыстоцелеўскі погляд на святло як просты, элементарны феномен. Узнікненне колераў (напрыклад, пры ўтварэнні вясёлкі) тлумачылася яго аслабленнем: чым яно большае, тым цямнейшы колер атрымліваецца ў выніку [62, c.13].

[66] Н'ютан звяртаўся да ідэі ўзаемадзеяння святла і асяроддзя, у якім яно распаўсюджваецца, толькі для тлумачэння тых момантаў, што выклікалі ў яго істотныя цяжкасці, – напрыклад, дыфракцыі.

[67] А.Фізо належыць цэлы шэраг заслуг у справе развіцця оптыкі (зрэшты, не толькі яе). Так, напрыклад, ён эксперыментальным шляхам вызначыў хуткасць святла ў зямных умовах і выявіў яе залежнасць ад асяроддзя, у якім яно распаўсюджваецца [3, c.310].

[68] Дадзеная залежнасць вынікала з даследаванняў Б.Франкліна (1706-1790), Д.Прыстлі і Г.Кавендыша (1731-1810). На неабходны ўзровень дакладнасці пры правядзенні адпаведных вымярэнняў, аднак, упершыню здолеў узняцца менавіта Ш. Кулон [78, c.508-509].

[69] Сіла электрычнага ўзаемадзеяння, як і сіла гравітацыі, адваротна прапарцыянальная квадрату адлегласці паміж аб’ектамі, якія ўзаемадзейнічаюць паміж сабой.

[70] У станаўленні рэвалюцыйнай тэорыі Дальтана, як і ў рэвалюцыйных пераўтварэннях хімічных ведаў, што адбыліся дзякуючы адкрыццям А.Лавуаз’е, істотнае месца належала даследаванням паветра. У цэнтры ўвагі новай хіміі знаходзіліся, такім чынам, газы, у той час як алхімікі засяроджваліся найперш на металах.

[71] Неабходна адзначыць, што Дарвін не ўпадобеў тэрмін “эвалюцыя” і супраціўляўся, як мог, яго ўжыванню ў дачыненні да сваёй тэорыі. Тым не менш да 70-х гадоў ХІХ ст. дадзены тэрмін набыў трывалую біялагічную афарбоўку і ад гэтага часу ўжываўся для абазначэння працэсу развіцця арганічнага свету [26, c.388].

[72] Некаторыя даследчыкі растлумачваюць дадзенае прамаруджванне не памкненнем Дарвіна ўмацаваць падмурак сваёй тэорыі, а ўсведамленнем яе недастатковасці [34, т.1, c.953].

[73] Неабходна мець на ўвазе, што суадносіны эвалюцыйнай філасофіі Г.Спенсера і эвалюцыйнай біялогіі Ч.Дарвіна ўвогуле маюць досыць складаны характар і не могуць быць апісаныя цалкам адэкватна, калі прытрымлівацца толькі згаданага ўяўлення пра экстрапаляцыю Спенсерам дарвінаўскіх ідэй на развіццё грамадства.

[74] Сацыял-дарвінізм зводзіць грамадскія дачыненні і з’явы да біялагічных.

[75] Ужо ў 60-х гадах ХІХ стагоддзя Э.Гекель выказаў думку, паводле якой ядро ў працэсе дзялення клеткі забяспечвае перадачу спадчынных задаткаў, у той час як пратаплазма “адказвае” за прыстасаванне да знешніх умоў [26, c.445].

[76] В.Флемінг істотным чынам паспрыяў узбагачэнню біялагічнай тэрміналогіі і мовы біялогіі, увёўшы ў навуковы зварот такія тэрміны, як храматын і мітоз. А вось адкрытыя ім храмасомы былі названы так іншым нямецкім біёлагам – В.фон Вальдэерам-Гарцам (1836-1921) [78, c.562].

[77] Тэрмін “фактар” – гэта мендэлеўскі адпаведнік сучаснага тэрміна “ген”.

[78] У гэтым плане мендэлеўскія абагульненні не былі ўніверсальнымі.

[79] Пры монагібрыдным скрыжаванні бацькоўскія арганізмы адрозніваюцца паміж сабой па адной прыкмеце.

[80] В.Рэнтген з’яўляецца першым нобелеўскім лаўрэатам у галіне фізікі (1901 г.).

[81] Без адкрыцця М.Планка фізікі мусілі б задавальняцца двума законамі, якія апісвалі і тлумачылі згаданы спектр – адзін меў моц для нізкіх, а другі для высокіх частот.

[82] Гэты эксперымент удасканальваўся і шмат разоў паўтараўся (з 1887 г. А.Майкельсан супрацоўнічаў пры яго правядзенні з Э.Морлі (1838-1923)) з нязменным вынікам.

[83] Ідэнтычная па сутнасці рэканструкцыя працэсу ўзнікнення рэлятывісцкай фізікі (толькі ў значна больш тэхнічнай форме) прапаноўваецца ў працы А.А.Лагунова, прысвечанай дадзенай праблеме [61].

[84] Імя Пуанкарэ пры гэтым можа ўвогуле не згадвацца (як, напрыклад, у працытаванага вышэй Д.Параш’я [70, c.65-67]).

[85] Так, прынамсі, распачынаецца яго ўласная рэканструкцыя тэорыі адноснасці [29, с.24-26; 39, c.133].

[86] У пэўным сэнсе можна весці гаворку пра супрацьлегласць у гэтым плане тэорыі адноснасці і класічнай тэрмадынамікі, якая малявала чалавецтву змрочную карціну цеплавой смерці Сусвету на грунце свайго другога пачатку [70, c.77].

[87] Шчыльнасць масы-энергіі – гэта велічыня, якая характарызуе дачыненне масы-энергіі да аб’ёму, у якім яна размеркаваная.

[88] Касмалагічная канстанта фіксавала наяўнасць (супрацьлеглага гравітацыі) адштурхоўвання паміж матэрыяльнымі касмічнымі ўтварэннямі, якое ўзрастае з павялічэннем адлегласці паміж імі. Яна магла быць вызначаная такім чынам, што ў выніку атрымлівалася стацыянарная мадэль універсуму.

[89] Як указвае, напрыклад, у дадзенай сувязі Д.Параш’я, “Фрыдман першы, магчыма, разважаў як сапраўдны матэматык, абмежаваўшыся абсалютна бесстароннім вывадам розных класаў касмалагічных рашэнняў ураўненняў Эйнштэйна” [70, c.119].

[90] Паводле разлікаў С.Хокінга і Р.Пенроўза, дадзеная велічыня складае 7∙10-30 g/cm3 (пры пэўным значэнні канстанты Хабла, якая вызначае суадносіны хуткасці аддалення і адлегласці пэўнай галактыкі ад Млечнага Шляху) [77, c.202-203].

[91] Гісторыкі навукі адзначаюць, што адкрыццё Э.Хабла было зроблена не на пустым месцы, што ў яго былі папярэднікі (напрыклад, іншы амерыканскі астраном В.Сліфер (1875-1969), які, дзякуючы сваім назіранням, істотна наблізіўся да ўяўлення пра ўніверсум, што знаходзіцца ў стане пашырэння) [26, c.396-397; 69, с.31-32].

[92] Эмпірычнай канстатацыяй таго факта, што Сусвет не абмяжоўваецца нашай галактыкай – Млечным Шляхам, мы таксама абавязаныя Э.Хаблу, хоць на спекулятыўным узроўні дадзенае меркаванне неаднаразова выказвалася і да яго (напрыклад, І.Кантам, які сцвярджаў, што белыя туманнасці ўяўляюць сабой падобныя на Млечны Шлях гіганцкія дыскападобныя аб’екты, хоць большасць навукоўцаў разглядала іх як газападобныя ўтварэнні ўнутры нашай галактыкі) [69, c.17; 77, c.246].

[93] З’ява фотаэфекту была фактычна адкрытая Г.Герцам у 1887 г. [60, c.211].

[94] Дадзеная мадэль атрымала такую назву праз сваё падабенства з геліяцэнтрычнай мадэллю нашай планетнай сістэмы.

[95]Фармулёўка адпаведнага ўраўнення, у якім улічваліся рэлятывісцкія эфекты, г. зн. дапускалася хуткасць руху часціц, блізкая да хуткасці святла, належыць выдатнаму англійскаму фізіку П.Дзіраку

[96]Крыху пазней (у 1930 г.), аналізуючы сітуацыю ў фізіцы ў сярэдзіне 20-х гадоў, Шродзінгер пісаў у дадзенай сувязі, што прадказанні адносна будучых вымярэнняў, зробленыя на аснове абедзвюх тэорый, супадалі [81, c.19].

[97]Істотная роля ў яе распрацоўцы належала нямецкаму фізіку М.Борну (1882-1970) [34, т.3, c.720], які разам з тым узяў самы чынны ўдзел і ў распрацоўцы матрычнай механікі [70, c.168].

[98] Гісторыкі навукі ўказваюць, што і для А.Эйнштэйна, і для Э.Хабла шлях да нестацыянарнай мадэлі Сусвету быў досыць няпростым. Ж.Леметр быў значна больш рашучым і паслядоўным у гэтым плане: менавіта ён найбольш паспяхова і ўдала сінтэзаваў на касмалагічным узроўні дасягненні рэлятывісцкай фізікі і сучаснай астраноміі. Таму яго з поўным правам можна назваць “сапраўдным бацькам сучаснай касмалогіі” [26, c.397].

[99] У філасофскай літаратуры дыскутуецца таксама магчымасць адасаблення адна ад адной гэтых дзвюх (тэмпаральнай і прасторавай) частак першай кантаўскай касмалагічнай антыноміі на падставе сучасных касмалагічных даследаванняў і іх вынікаў [70, c.133-135].

[100] Напісаны ў 1948 г. артыкул Р.Альфера, Г.Бетэ і Г.Гамава, які меў грунтоўна важнае значэнне ў кантэксце распрацоўкі тэорыі Вялікага Выбуху, атрымаў у навуковай супольнасці назву “Альфа-бэта-гама”. У гістарычнай літаратуры можна сутыкнуцца са сцверджаннямі, паводле якіх Г.Бетэ непасрэдна не ўдзельнічаў у яго напісанні, а яго імя было ўведзена ў лік аўтараў менавіта для таго, каб зрабіць магчымым згаданы патранімічны жарт [26, c.111].

[101]Прыстаўка “супер” у назве дадзенай тэорыі абумоўлена тым, што яна абапіраецца на разгледжанае ў папярэднім параграфе ўяўленне пра суперсіметрыю.

[102] Стваральнікі М-тэорыі не патлумачылі, што хаваецца за літарай “М” у яе назве, і дадзенае пытанне застаецца на сённяшні дзень прадметам спекуляцый навукоўцаў [43, c.120].

[103] Сучасны французскі біёлаг, лаўрэат Нобелеўскай прэміі Ф.Жакоб піша ў дадзенай сувязі, што пачатак сучаснай навукі датуецца момантам, калі ўсеагульныя пытанні былі адсунутыя на задні план пытаннямі, абмежаванымі ў сваім змесце і значэнні. І калі, працягвае ён, на ўсеагульныя пытанні даваліся не інакш, як абмежаваныя адказы, дык “абмежаваныя” пытанні атрымліваюць усё больш агульныя адказы [76, c.35].

[104] Выступаючы ў якасці структурных адзінак макрамалекулы ДНК, нуклеатыды самі з’яўляюцца складанымі рэчывамі: у іх склад уваходзяць азоцістая аснова, цукар (дэзоксірыбоза ці рыбоза) і фасфат.

[105] Найбольш аўтарытэтным тэарэтыкам-эвалюцыяністам пачатку ХХ стагоддзя быў А.Вайсман, які абагульніў і радыкалізаваў дарвінаўскі прынцып натуральнага адбору, распаўсюдзіў яго на ўсе працэсы біялагічнага развіцця, а таксама звязаў адпаведную праблематыку з праблемамі цыталогіі [34, т.1, c.962].

[106] Паняцці духа і адпаведна духоўнага вызначыць досыць няпроста, а іх дакладнае (згодна з пазнавальнымі стандартамі матэматызаванага прыродазнаўства) вызначэнне ўвогуле немагчымае. Тым е менш у самым шырокім сэнсе мы можам акрэсліць духоўнае як звязаную са здольнасцю да ўтварэння сімвалаў і з творчай актыўнасцю ў сімвалічным універсуме сферу, у якой адбываецца трансфармацыя, пераўтварэнне, “зняцце” біялагічнага.

[107] Такі падыход быў прапанаваны і развіты найперш у нямецкамоўнай філасофскай і навуковай літаратуры, прысвечанай дадзенай праблеме [34, т.4, c.595].

[108] Ад лац. elimino – выдаляць, выганяць.

[109] Шмат хто з даследчыкаў даводзіць пра неправамернасць раздзялення эўтаназіі на пасіўную і актыўную на той падставе, што адсутнасць пэўных дзеянняў можа быць кваліфікаваная як дзеянне [27, c.260-261].

[110] Увогуле, дадзены тэрмін ужываўся і да Г.Хакена ў ХІХ і ХХ стст.– у медыцыне, нейрафізіялогіі, псіхалогіі і інш. На новае яго ўвядзенне нямецкім фізікам гэты ўжытак, аднак, непасрэдным чынам не паўплываў [46, т.10, c.782-783].

МЕНЕДЖМЕНТ


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.015 сек.)