АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Краткие теоретические сведения. В основу частотного (спектрального) метода положено интегральное преобразование Фурье

Читайте также:
  1. I. ОБЩИЕ СВЕДЕНИЯ
  2. I. Общие сведения
  3. А. Теоретические взгляды Я.А. Пономарева
  4. А.2. Статистические сведения и материалы
  5. А.А. Ахматова. Сведения из биографии. Лирика.
  6. А.А. Блок. Сведения из биографии. Лирика.
  7. Бразилия: общие сведения
  8. Бщие сведения, классификация и стандартизация строительных материалов
  9. В журнале движения больных отделения отмечаются сведения о движении больных: число выбывших и поступивших.
  10. ВВЕДЕНИЕ И НЕКОТОРЫЕ ТЕОРЕТИЧЕСКИЕ ОСНОВЫ
  11. Вирусы и фаги. Краткие сведения об открытии. Строение, проникновение в клетку. Первые фазы инфекции при заражении бактериофагом.
  12. Вкладка «Дополнительные сведения»

 

В основу частотного (спектрального) метода положено интегральное преобразование Фурье. Этот метод нашел широкое применение при анализе реакции цепи на воздействие импульса тока или напряжения.

Сущность частотного метода заключается в представлении непериодической функции времени (тока или напряжения) в виде суммы бесконечного множества гармонических составляющих, отличающихся друг от друга по частоте, амплитуде, начальной фазе. При этом предполагается:

1) частота w принимает всевозможные значения от ;

2) синусоидальные составляющие на вход цепи поступили достаточно давно, и реакция цепи будет иметь установившейся характер.

Таким образом, задача расчета переходного процесса подменяется задачей расчета цепи в установившемся режиме при воздействии множества гармонических составляющих импульса.

Из курса высшей математики [9] известно, что любая абсолютно интегрируемая функция времени может быть вычислена в виде наложения бесконечного множества своих гармонических составляющих с помощью интеграла Фурье

 

. (20)

 

Другими словами, интеграл Фурье дает разложение функции времени в непрерывный спектр.

В формуле (20) комплексная функция частоты F (j w) дает закон изменения комплексных амплитуд гармоник в зависимости от частоты и называется частотным спектром (спектральной плотностью, спектральной, частотной или амплитудно-фазовой характеристикой) заданной функции f (t) [1, 2] и вычисляется по формуле

. (21)

Модуль частотного спектра F (w), характеризующий зависимость амплитуды гармонических составляющих от частоты, называется амплитудно-частотной характеристикой. А аргумент частотного спектра Q(w), характеризующий зависимость начальной фазы гармоник от частоты, называется фазочастотной характеристикой.

Соотношения (20) и (21) называются соответственно обратным и прямым преобразованием Фурье и обозначаются F –1{ F (j w)} и F { f (t)}.

Сравнивая прямое преобразование Фурье

с прямым преобразованием Лапласа

,

обратное преобразование Фурье

с обратным преобразованием Лапласа

,

можно сделать вывод, что преобразования Фурье являются частным случаем преобразований Лапласа и получаются из него при р = j w.

Следовательно, частотный спектр F (j w) функции f (t) совпадает с соответствующим изображением Лапласа при замене р на j w. Это свойство позволяет по аналогии с операторным методом определять мгновенные значения токов и напряжений в цепи при подаче на вход импульса напряжения или тока.

Методика расчета переходных процессов частотным методом аналогична методике расчета операторным методом, изложенной в разд. 3.

В табл. 2 приведены законы Ома и Кирхгофа для частотных спектров (спектральная форма) и в операторной форме. В прил. 3 для некоторых наиболее употребляемых функций времени показаны их частотные спектры.

При расчете частотным методом используют следующие теоремы.

Теорема подобия. Пусть задана функция времени и известна ее частотная характеристика . Частотная характеристика новой функции времени f (kt), где k – постоянная, определитсявыражением .

Таблица 2


Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)