АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Транзисторные оптопары

Читайте также:
  1. Тиристорные оптопары
  2. Транзисторные усилители.

Исследование оптоэлектронных приборов

Методические указания к выполнению лабораторных работ по дисциплине «Электроника»

 

 

Йошкар-Ола,

Год

 

Лабораторная работа № 4

 

Исследование оптоэлектронных приборов

Теоретическая часть.

1.1. Оптопарой называется оптоэлектронный полупроводниковый прибор, содержащий источник и приёмник оптического излучения, которые оптически и конструктивно связаны между собой. Для оптопары как входным, так и выходным параметром является электрический сигнал. Особенностью оптопар (оптронов) является отсутствие гальванической связи между входными и выходными сигналами. В качестве излучателя оптопары могут быть использованы светоизлучающий или инфракрасный диод, электрическая лампочка, или полупроводниковый лазер. В качестве приёмника оптопары находят применение фотоэлектрические приборы: фоторезисторы, фотодиоды, фототранзисторы, фототиристоры.

Рис. 1. Условное обозначение оптопар: а) резистивная оптопара, б) диодная оптопара, в) транзисторная оптопара, г) тиристорная оптопара

 

Резистивные оптопары.

В резистивной оптопаре в качестве фотоприёмного элемента используется фоторезистор. Фоторезистор и фотоизлучатель объединены внутри корпуса оптопары оптически прозрачной средой с большим сопротивлением изоляции. Резистивные оптопары применяются преимущественно для бесконтактной коммутации, для модуляции в делителях напряжения.

 

Рис. 2. Резистивный оптрон: а) схема ключа, б) схема делителя напряжения

 

Диодные оптопары.

В диодной оптопаре в качестве фотоприёмного элемента используется диод на основе кремния. Для описания свойств диодных оптопар обычно используются вольт-амперные характеристики фотодиода (рис.3).

 

 

 

Рис. 3. Вольт-амперные характеристики фотодиода

 

Фотодиоды могут работать в одном из двух режимов:

- в режиме фотопреобразователя (U<0, i<0)

- в режиме фотогенератора (U>0). При этом диод отдает энергию во внешнюю цепь. В этом режиме работают солнечные батареи.

Передаточная характеристика Iвых=f(Iвх) (Iвых=f(Ф)) при Un<0 в режиме фотопреобразователя, представляющая собой зависимость выходного тока (обратного) фотодиода от входного, практически линейна в широком диапазоне входного тока.

Передаточная характеристика в фотогенераторном режиме нелинейна. Фото-ЭДС при увеличении входного тока Iвх(Ф) стремится к насыщению и не может превышать контактной разности потенциалов п-р перехода фотодиода, которая составляет 0,5...0,8 В.

Диодные оптопары типа АОД101А...АОД101Д, АОД107А...АОД107В могут быть использованы как в фотодиодном, так и в фотогенераторном режиме. Оптопары АОД102А-1 и ЗОД112А-1 используются только в фотогенераторном режиме.

Диодные оптопары имеют высокое быстродействие, малые темновые токи в выходной цепи и высокое сопротивление гальванической развязки. Они широко применяются в аппаратуре передачи данных, в схемах электронного трансформатора, для гальванической развязки блоков и т.д. (Рис.4)

Рис.4. Применение оптодиодных пар: а) в линиях связи, б) в оптронных ключах, в) в схемах гальванической развязки

 

Транзисторные оптопары

Транзисторная оптопара выполняется с фотоприёмным элементом на основе транзистора. В ряде случаев применяется составной фототранзистор, например, АОТ 110А. Транзисторная оптопара по сравнению с диодной имеет более высокий КПД.

Транзисторные оптопары находят преимущественное применение в аналоговых и ключевых коммутаторах сигналов, схемах согласования, гальванической развязки, в линиях связи, оптоэлектронных реле.

 


1 | 2 | 3 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)