АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Обеззараживание воды хлором и хлорсодержащими реагентами

Читайте также:
  1. ОБЕЗЗАРАЖИВАНИЕ ВОДЫ
  2. Обеззараживание воды
  3. Обеззараживание воды
  4. Обеззараживание воды озонированием, УФ облучением.
  5. Обеззараживание воды, классификация методов.
  6. Обеззараживание воды.
  7. Обеззараживание хлором и хлорсодержащими и реагентами. Схема хлораторной, оборудование.

. Хлорирование воды
Хлорирование воды как средства ее обеззараживания было начато в начале XX века. Впервые хлор для обеззараживания воды стали использовать в Лондоне после эпидемии холеры 1870 года. В России хлорирование воды было осуществлено в 1908 году, также в связи с эпидемией холеры. В дальнейшем, его проводили в Кронштадте, Нижнем Новгороде, Ростове-на-Дону, Петербурге. В последующие годы хлорирование воды как эффективное средство борьбы с инфекционными заболеваниями распространилось во всем мире быстрыми темпами и в настоящее время такой водой пользуются многие сотни миллионов людей[16].

 

Не секрет, что хлор – это яд. Токсичность хлора связана с его высокой окислительной способностью – он входит в тройку самых сильных галогенов. Это в свою очередь означает, что хлор способен разрушать любую органику и создавать на ее основе хлорорганические соединения.
Сущность обеззараживающего действия хлора заключается в окислительно-восстановительных процессах, происходящих при взаимодействии хлора и его соединений с органическими веществами микробной клетки. В качестве хлорреагентов используют в основном жидкий хлор, хлорную известь, гипохлориты и диоксид хлора. Растворимость хлора в воде зависит от температуры и давления. При атмосферном давлении и температуре 10°С в 1 л растворяется около 3 л газообразного хлора. При введении хлора в воду образуются хлорноватистая и соляная кислоты. Далее происходит диссоциация образовавшейся хлорноватистой кислоты [4].

 

Cl 2 + H2O ® HClO + HCl

HClO ®
Н
+ + ClO -

 

Получающиеся в результате диссоциации хлорноватистой кислоты гипохлоритные ионы ClO -обладают наряду с недиссоциированными молекулами хлорноватистой кислоты бактерицидным свойством. Сумма Cl 2 +
HClO + ClO
- называют свободным активным хлором.
Количество активного хлора, необходимого для обеззараживания воды, должно определяться не по количеству болезнетворных бактерий, а по всему количеству органических веществ и микроорганизмов (а также и неорганических веществ, способных к окислению), которые могут находиться в хлорируемой воде.

Правильное назначение дозы хлора является исключительно важным. Недостаточная доза хлора может привести к тому, что он не окажет необходимого бактерицидного действия; излишняя доза хлора ухудшает вкусовые качества воды. Поэтому доза хлора должна быть установлена в зависимости от индивидуальных свойств очищаемой воды на основании опытов с этой водой.
Расчетная доза хлора при проектировании обеззараживающей установки должна быть принята исходя из необходимости очистки воды в период ее максимального загрязнения (например, в период паводков). Показателем достаточности принятой дозы служит наличие в воде так называемого остаточного хлора (остающегося в воде от введенной дозы после окисления находящихся в воде веществ). Согласно требованиям ГОСТ 2874—73, концентрация остаточного хлора в воде перед поступлением ее в сеть должна находиться в пределах 0,3— 0,5 мг/л.
Для осветленной речной воды доза хлора обычно колеблется в пределах 1,5—3 мг/л; при хлорировании подземных вод доза хлора чаще всего не превышает 1—1,5 мг/л; в отдельных случаях может потребоваться увеличение дозы из-за наличия в воде закисного железа. При повышенном содержании в воде гуминовых веществ требуемая доза возрастает.
При введении хлора в обрабатываемую воду должны быть обеспечены хорошее смешивание его с водой и достаточная продолжительность (не менее 30 мин) его контакта с водой до подачи ее потребителю. Хлорирование уже осветленной воды обычно производят перед поступлением ее в резервуар чистой воды, где и обеспечивается необходимое для их контакта время.
Для увеличения продолжительности бактерицидного действия хлора и предотвращения образования хлорфенольных запахов в воду наряду с хлором вводят аммиак. При его взаимодействии с хлорноватистой кислотой, которая образуется при хлорировании воды, получается монохлорамин который, гидролизуясь, образует сильный окислитель – гипохлоритный ион.
Гидролиз хлорамина протекает достаточно медленно, поэтому в первое время его окислительное действие ниже, чем хлора. Однако длительность бактерицидного действия хлорамина существенно больше. Поэтому аммонизацию применяют, если вода длительное время должна находиться в промежуточных резервуарах и сетях. Соотношение доз хлора и аммиака зависит от состава исходной воды [22].
Широкому распространению хлора в технологиях водоподготовки способствовала его эффективность при обеззараживании природных вод и способность консервировать уже очищенную воду длительное время. Кроме того, предварительное хлорирование воды позволяет снизить цветность воды, устранить ее запах и привкус, уменьшить расход коагулянтов, а также поддерживать удовлетворительное санитарное состояние очистных сооружений станций водоподготовки. В этом смысле ни одно из альтернативных хлору средств не может сравниться с ним по универсальности и простоте применения.
Обеззараживание питьевой воды хлорированием используется наиболее часто как наиболее экономичный и эффективный метод в сравнении с любыми другими известными методами. В США 98,6% воды (подавляющее количество) подвергается хлорированию. Аналогичная картина имеет место и в России, и в других странах, т.е. в мире 99 из 100 случаев для дезинфекции используют либо чистый хлор, либо хлорсодержащие продукты. В США для этих целей в среднем в год используют около 500 тыс. тонн хлора, в России – до 100 тыс. тонн. Такая популярность хлорирования связана с и тем, что это единственный способ, обеспечивающий микробиологическую безопасность воды в любой точке распределительной сети в любой момент времени благодаря эффекту последействия. Все остальные методы обеззараживания воды, в т.ч. и промышленно применяемые в настоящее время озонирование, и УФ-облучение не обеспечивают обеззараживающего последействия и поэтому требуют хлорирования на одной из стадий водоподготовки.
Однако хлор как реагент водоподготовки имеет существенные недостатки. Например, хлор и хлорсодержащие соединения обладают высокой токсичностью, что требует строгого соблюдения повышенных требований техники безопасности. Хлор воздействует, в основном, на вегетативные формы микроорганизмов, при этом грамм-положительные штаммы бактерий более устойчивы к воздействию хлора, чем грамм-отрицательные штаммы микроорганизмов.
Высокой резистентностью к действию хлора обладают также вирусы, споры и цисты простейших и яйца гельминтов [4]. Для удаления этих микроорганизмов рекомендуется сочетать процессы обеззараживания с процессами снижения мутности (коагуляцией, отстаиванием, фильтрацией).

 

Необходимость транспортировки, хранения и применения на водопроводных станциях значительного количества жидкого хлора, а также сбросы этого вещества и его соединений в окружающую среду обусловили высокую экологическую опасность. К тому же, хлор обладает высокой коррозионной активностью.
Одним из существенных недостатков газообразного хлора считаются повышенные требования к его перевозке и хранению и потенциальный риск здоровью, связанный прежде всего с возможностью образования галоген содержащих соединений (ГСС). Их концентрация возрастает прямо пропорционально дозе хлора и времени контакта его с водой. Большую часть ГСС составляют тригалометаны (ТГМ): хлороформа, дихлорбромметана, дибромхлорметана и бромоформа. Образование тригалометанов обусловлено взаимодействием соединений активного хлора с органическими веществами природного происхождения [9]. Этот процесс растянут во времени до нескольких десятков часов, а количество ТГМ при прочих равных условиях тем больше, чем выше pH воды.
Хлороформ встречается в питьевой воде наиболее часто и в более высоких концентрациях, чем остальные ТГМ, и рассматривается как индикатор содержания в ней продуктов хлорирования. Довольно продолжительное время имела место недооценка одной из наиболее значимых сторон биологического действия ТГМ — отдаленных эффектов, в частности канцерогенного действия. Однако с середины 90-х годов появились исследования, заставляющие по-иному взглянуть на ранее не считавшиеся столь опасными побочные продукты хлорирования питьевой воды. Накапливалась достоверная информация об онкологической опасности, связанной с употреблением воды содержащей ТГМ. В ряде эпидемиологических исследований было выявлено влияние ТГМ на репродуктивную функцию женщин: повышение частоты нарушений течения беременности, внутриутробного развития плода и появления врожденных уродств, вызванных хлорированной питьевой водой с концентрациями ТГМ более 80—100 мкг/л. Таким образом, к 2000 г. накопились многочисленные данные о неблагоприятном влиянии хлороформа на здоровье населения [11].
Было установлено также, что при использовании хлора для обеззараживания водопроводной воды хлороформ в бытовых условиях воздействует на человека несколькими путями: не только энтерально, но и через легкие с вдыхаемым воздухом. Необходимо подчеркнуть, что ингаляционный путь поступления хлороформа в организм по значимости вполне сопоставим с энтеральным. По оценкам, сделанным для Канады, в бытовых условиях больше всего хлороформа население получает через легкие и с питьевой водой.
Закрытое воздушное пространство над водой содержит тем больше хлороформа, чем больше его концентрация в воде и выше температура воздуха и воды.
Вдыхание хлороформа подавляет действие центральной нервной системы. Вдыхание около 900 частей хлороформа на 1 миллион частей воздуха за короткое время может вызвать головокружение, усталость, головную боль и тошноту. Постоянное воздействие хлороформа может вызвать заболевания печени и почек. Приблизительно 10 % населения Земли имеют аллергическуюреакцию на хлороформ, приводящую к высокой температуре тела (40 °C).
Из этого следует, что без учета комплексного воздействия хлороформа питьевой воды на человека его гигиенический норматив в воде не может обеспечить безвредность водопотребления для населения. Поэтому ПДК 200 мкг/л, долгое время принятая в нашей стране, была пересмотрена и снижена до 100 мкг/л (ГН 2.1.5.1315-03). Еще более низкая величина — 60 мкг/л — уже утверждена Минздравсоцразвития России и включена в СанПиН 2.1.4.1116-02 как показатель безвредности органического загрязнения расфасованных вод первой категории [17].

 

Замена жидкого или газообразного хлора гипохлоритом натрия обеспечивает безопасность при эксплуатации, но значительно увеличивает вероятность образования ТГМ. Это обусловлено тем, что малоактивные гипохлорит-ионы не в состоянии быстро окислить наиболее реакционноспособные части молекул гумусовых веществ и потому реагируют с ними с образованием ТГМ [21].
Исследования, проведенные на москворецкой воде, показали, что при повышении эффективности процессов коагуляции-отстаивания существует возможность минимизации дозы первичного хлора. Повышение эффективности работы головных сооружений за счет увеличения дозы коагулянта (сульфата алюминия) с 8,0 до 10,0 мг/л при обработке воды р.Москвы на традиционной линии экспериментальной станции чистки воды (ЭСОВ) позволяло снизить дозу хлора с 3,5 до 2,0 мг/л. При этом концентрация хлороформа в фильтрате уменьшилась с 38,0 до 18,8 мкг/л, дихлорбромметана – с 3,0 до 1,5 мкг/л.
Исследования режима предварительной аммонизации и хлорирования воды позволили сделать вывод о перспективности этого метода при очистке питьевой воды.
В ходе эксперимента изучалось влияние температуры воды и солевого аммиака, содержащегося в природной воде, на процесс хлораммонизации. Подбор доз хлора и аммиака, а также их соотношений, осуществлялся в лабораторных условиях сериями пробной аммонизации. В летний период испытаний было определено, что наличие в исходной воде солевого аммиака даже в количестве 0,25 мг/л не обеспечивало отсутствие свободного хлора. Только при дозировании аммиака в смеситель в количестве 0,25 мг/л свободный хлор полностью перешел в моно- и дихлорамины, что позволило предотвратить процесс образования хлорорганических соединений. Результаты показали, что в данный период исследований использование дозы аммиака 0,25 мг/л позволило в три раза снизить концентрацию хлороформа в обрабатываемой воде.
В весенне-летний период испытаний питьевая вода, полученная на технологической линии ЭСОВ при дозах аммиака 0,2 – 0,3 мг/л и хлора 1,2 – 2,2 мг/л (предварительная аммонизация и хлорирование), и дозах аммиака 0 – 0,1 мг/л (хлораммонизация фильтрата), по химическим показателям качества соответствовала нормативу на питьевую воду. Однако в фильтрате были зафиксированы споры сульфидредуцирующих клостридий в количестве 1 КОЕ/20 мл, имели место проскоки по зоопланктону из-за интенсивного увеличения его численности при потеплении исходной воды. В осенне-зимний период испытаний фильтрованная и питьевая вода по основным химическим, бактериологическим и гидробиологическим показателям качества соответствовали нормативам на питьевую воду.
Так же были проведены испытания различных видов мембранной фильтрации с использованием обратноосмотических, нанофильтрационных и ультрафильтрационных мембран. Оценка возможностей мембранных технологий для доочистки воды от техногенных токсикантов показали, что селективность выделения хлорорганических соединений различна для разных типов мембран. При испытании мембран было установлено, что загержание мембранами хлорорганических и других техногенных токсикантов существенно отличается от извлечения природных примесей, и в большей степени зависит от физико-химических свойств самих загрязнений (полярности, степени гидратации, ассоциированности и др.), чем от размеров мембран.
Из испытанных мембранных элементов в диапазоне размеров пор от нанофильтрации до верхнего предела ультрафильтрации, лучшие результаты показали: ультрафильтрационный элемент GE 4040F и нанофильтрационный элемент HL4040F. Применение этих мембран требует высоких уровней энергозатрат.
Мембранные технологии широко используются на современной Юго-Западной водопроводной станции (ЮЗВС), введенной в эксплуатацию в Москве в 2006 г. Отличительной особенностью этой станции производительностью 250 тыс. м3/сут является комплексное использование классической технологии очистки воды поверхностных источников - коагулирования, отстаивания, фильтрования с добавлением новых методов очистки - озоносорбции и мембранного фильтрования. На ЮЗВС используются ультрафильтрационные мембраны, работающие под давлением 1,5 бара. Композитная структура мембран представлена несущей основой толщиной 100-200 микрон и самой мембраной толщиной 0,1-1,5 микрона. Основной характеристикой мембраны является пористость, которая определяет размер задерживаемых частиц. Мембранная ультрафильтрация в технологической схеме ЮЗВС выполняет функцию тонкой доочистки воды и реализована на мембранах, "чувствительных" к качеству поступающей на них воды.Мосводоканал планирует и дальше развивать на своих сооружениях применение мембранного фильтрования и включать эту стадию в проекты новых блоков на основе технико-экономического обоснования с учетом опыта эксплуатации ЮЗВС [22].
Методы удаления хлорорганических соединений, образующихся при очистке воды, требуют значительных капитальных и эксплуатационных затрат. В связи с этим, наиболее рациональным методом уменьшения побочных продуктов хлорирования является снижение концентрации органических веществ на стадиях очистки воды до хлорирования. Это позволит уменьшить дозу хлора при обеззараживании и не превышать концентрацию побочных продуктов ПДК, которые установлены в пределах 0,06 – 0,2 мг/л и соответствуют современным научным представлениям о степени их опасности для здоровья. Научные исследования, проведенные в США о способности этих веществ вызывать рак, показали их безопасность в указанном выше диапазоне концентраций [18].

 

Уменьшение концентраций побочных продуктов хлорирования требует нестандартных решений очистки воды на первичном этапе водоподготовки. Одним из таких решений является технологическая схема с предварительным озонированием воды. Опыт ее применения позволяет сделать вывод, что при этом повышается качество очищенной воды по мутности, цветности, удаляются привкусы и запахи. Предварительное озонирование позволяет существенно уменьшить дозу коагулянта. Однако хлорирование воды после ее озонирования, как уже отмечалось выше, влечет свои проблемы [9].

Последние исследования показали, что мнение об озонировании как о более безвредном способе обеззараживания воды – ошибочно. Не стоит забывать о том, что озон – неустойчивое химическое соединение трех атомов кислорода O3. Поэтому озон имеет очень высокую химическую активность. Продукты реакции озона с содержащимися в воде органическими веществами представляют собой альдегиды, кетоны, карбоновые кислоты и другие гидроксилированные алифатические и ароматические соединения. Наиболее часто в озонированной воде отмечается присутствие альдегидов (формальдегид, ацетальдегид, глиоксаль, метилглиоксаль).

Существуют, как минимум, три основные причины нежелательного присутствия альдегидов в питьевой воде:

• альдегиды – высоко биоразлагаемые вещества, и значительное их количество в воде повышает возможность биологического обрастания трубопроводов и увеличивает опасность вторичного загрязнения воды микробиологическими компонентами;

• некоторые альдегиды обладают канцерогенной активностью и представляют опасность для здоровья людей;

• вследствие отсутствия эффекта последействия необходимо осуществлять хлорирование на второй ступени обеззараживания питьевой воды, а при этом образовавшиеся в воде альдегиды увеличивают опасность образования хлорорганических побочных продуктов типа хлорцианатхлоральгидрата.

Применение другого альтернативного дезинфектанта – УФ-облучения позволяет избавиться от побочных продуктов обеззараживания, что является его несомненным достоинством. Но сегодня его промышленное применение осложняется отсутствием возможности оперативного контроля эффективности обеззараживания воды. Применение этого метода на практике определило необходимость конкретизации ряда положений водно-санитарного законодательства в части гигиенических требований к применяемой дозе облучения, гарантирующей качество воды, к УФ-системам и месту их расположения в технологической схеме водоподготовки. С этой целью выпущены соответствующие методические указания, в которых указывается на возможность применения УФ-облучения на этапе первичного обеззараживания воды при условии проведения на источнике водоснабжения технологических исследований. Методические указания не регламентируют величину дозы УФ-облучения при использовании его на этапе первичного обеззараживания воды [19].

Вместе с тем в методических указаниях отмечается, что УФ-облучение обеспечивает заданный бактерицидный и вирулицидный эффект лишь при соблюдении всех установленных эксплуатационных условий. Поэтому одним из важнейших вопросов применение этого метода является создание гарантий его надежности. С этой целью система должна быть снабжена датчиками измерения интенсивности УФ-облучения в камере обеззараживания, системой автоматики, гарантирующей звуковой и световой сигналы при снижении минимальной заданной дозы, счетчиков времени наработки ламп и индикаторов их исправности. Кроме того, для выполнения условий труда и безопасности здоровья обслуживающего персонала необходимо контролировать концентрацию озона в воздухе помещения, где расположена УФ-установка, соблюдать правильность хранения УФ-ламп, выполнять правила безопасности указанные в документах на применяемый тип УФ-установки.

Перечисленные технические сложности требуют достаточно критичного отношения к применению УФ-излучения в тех или иных практических условиях. Тем не менее, применение одновременно в системе обеззараживания с использованием хлорсодержащих реагентов и УФ-облучения, дает довольно успешные результаты [23].

Неоспоримое достоинство хлора перед другими традиционными методами обеззараживания – эффект последействия. Поэтому отказ от хлорирования, несмотря на его явные недостатки, пока не представляется возможным. Хлорирование обязательно, если вода направляется в разводящую сеть, а это мы имеем в подавляющем большинстве схем водоподготовки. И так как применение хлора неизменно в таких случаях, необходимо позаботиться об уменьшении количества образующихся при его использовании побочных продуктов, вредных для здоровья человека. Это требует, с одной стороны – снижения до допустимого минимума дозы вводимого в воду хлора и контроля дозы, что обеспечивается системой автоматического регулирования расхода хлора (САР-РХ), а с другой – снижения концентраций в воде органических веществ природного происхождения до хлорирования [20].

В целях снижения концентрации органических веществ в очищаемой воде, можно воспользоваться адсорбционной установке смесительного типа. Метод адсорбции отличается высокой эффективностью при выделении из воды растворенных примесей органического и неорганического происхождения. Принцип адсорбции основан на межмолекулярном взаимодействии примесей, содержащихся в воде, с частицами адсорбента. В качестве сорбента используют такие материалы, как песок, кокс, опилки и т.д. Наиболее эффективным является активированный уголь.
Нельзя забывать о том, что к воде предъявляются высокие требования по очистке от нерастворимых примесей (концентрация примесей не должна превышать 8 мг/л). Поэтому перед подачей воды на адсорбционную установку, необходимо провести предварительную механическую очистку воды и фильтрование.

 

Снижение до минимума концентраций органических примесей, посредством вышеперечисленных методов, позволит понизить дозу хлорреагента при дальнейшем обеззараживании, и тем самым уменьшит образования побочных продуктов хлорирования.


Обеззараживание воды с применением гипохлорита натрия
Применение жидкого хлора для обеззараживания воды требует неукоснительного соблюдения "Правил по производству, транспортированию, хранению и потреблению хлора" (ПБ 09-594-03) [10], в связи с чем затраты на обеспечение мер безопасности при использовании жидкого хлора многократно превышают затраты на само хлорирование. Затраты же на ликвидацию последствий возможной разгерметизации многотонных запасов жидкого хлора вообще не предсказуемы. Эти недостатки особенно ощутимы в нашей стране при обширной ее территории, когда хлор приходится перевозить на большие расстояния от заводов-поставщиков. Опасность утечки хлора на базисных складах водоочистных комплексов, расположенных вблизи населенных пунктов, во многих случаях препятствует применению этого метода обеззараживания воды. Использование хлорной извести и гипохлорита кальция технически просто, но дорого для крупных водоочистных комплексов.

 

По этой причине на сегодняшний день наиболее предпочтительным реагентом для первичного окисления и последующего обеззараживания питьевой воды перед подачей её в распределительную сеть считается гипохлорит натрия (ГХН), содержащий не менее 190 г/л активного хлора. Безопасность и надежность технологии обеззараживания воды гипохлоритом натрия способствовали ее стремительному внедрению на многие водопроводные станции страны [23]. Электрохимический способ получения гипохлорита натрия основан на получении хлора и его взаимодействии со щелочью в одном и том же аппарате – электролизере [4].
ГХН имеет ряд технологических преимуществ по сравнению с традиционной обработкой воды жидким хлором [11]:

 

  • реагент ГХН применяется в виде водного раствора и безопасен в обращении;


· при хранении и использовании гипохлорита натрия практически отсутствует выделение газообразного хлора;

· производительность системы дозирования гипохлорита натрия может регулироваться в автоматическом режиме как по сигналу расходомера (пропорциональное дозирование без обратной связи), так и по сигналу прибора, контролирующего остаточное содержание реагента после его введения (дозирование с обратной связью);

· для внедрения технологии хлорирования питьевой воды ГХН используются существующие помещения, что значительно упрощает переход сооружений на новую технологию;

· товарный гипохлорит натрия содержит относительно невысокие концентрации активного хлора (не более 15% по массе), поэтому оборудование для его нейтрализации значительно сокращается как по размеру, так и по сложности;

· товарный раствор гипохлорита натрия содержит в своём составе свободную щелочь (от 40 до 60 г/дм3), что значительно улучшает условия обработки воды при использовании коагулянтов, содержащих свободную кислоту, и сокращает затраты на подщелачивание обрабатываемой воды;

· раствор гипохлорита натрия менее опасен, к нему предъявляются более мягкие требования при транспортировке;

· товарный раствор гипохлорита натрия может перевозиться всеми видами транспорта.
Применение вместо хлора раствора гипохлорита натрия практически не вносит изменения в отработанную на насосно-фильтровальных станциях технологию с точки зрения обеспечения качества получаемой питьевой воды. Вместе с тем, появление возможности размещения складов обеззараживающего реагента (ГХН) непосредственно вплотную к блокам очистки и узлам обеззараживания воды, а не на отдельной площадке, несомненно, повышает оперативность управления технологическим процессом, а также практически исключает риск масштабных аварийных ситуаций, которые имеют место при использовании свободного хлора.
Проектные решения предусматривают полную автоматизацию технологических процессов хлорирования исходной воды ГХН. Все операции по дозированию реагента осуществляются в автоматическом режиме с учетом фактических результатов контроля расхода и качества воды. Автоматизированная система управления технологическими процессами (АСУ ТП) обеспечивает постоянный контроль параметров процесса и управление технологическими режимами для поддержания фактических показателей в регламентных значениях.
В проектной документации предусмотрен достаточный комплекс мер для предотвращения аварийной разгерметизации оборудования и локализации выбросов вредных веществ, защиты эксплуатационного персонала [12].
Принятые технические решения соответствуют требованиям норм и правил в области промышленной безопасности.
Гипохлорит натрия марки А (ГХН), ГОСТ 11086-76; ТУ 6-01-29-93 – NaOCl относится к реагентам-дезинфектантам и применяется для окисления и обеззараживания питьевой воды. Плотность раствора при 20°С – 1,27 г/см3. Это довольно устойчивый слабощелочной раствор.
Дезинфицирующее действие ГХН основано на том, что при растворении в воде он точно так же, как хлор образует хлорноватистую кислоту, которая оказывает непосредственное окисляющее и дезинфицирующее действие.
При введении гипохлорита натрия в воду образуются хлорноватистая и соляная кислоты по реакции:
Na
ClO
+
H2O
®
HClO + NaOH;

HClO
®

Н
+
+ ClO-

Реакция является равновесной, и образование хлорноватистой кислоты зависит от величины рН и температуры воды [13].

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)