АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Обратные матрицы. Математическая часть

Читайте также:
  1. III. Творческая часть. Страницы семейной славы: к 75-летию Победы в Великой войне.
  2. N-мерное векторное пространство действительных чисел. Компьютерная часть
  3. N-мерное векторное пространство действительных чисел. Математическая часть
  4. SCADA как часть системы автоматического управления
  5. А.2 Буквенная часть условного обозначения
  6. Аналитическая часть
  7. В блок-секционной схеме законченной единицей типового проектирования жилых зданий является блок-секция – повторяющаяся часть дома, сгруппированная вокруг лестнично-лифтового узла.
  8. Відомо, що в процесі травлення в ротовій порожнині відбувається початковий гідроліз деяких речовин. Який фермент приймає в цьому участь?
  9. Глава 36. ПОДГОТОВИТЕЛЬНАЯ ЧАСТЬ СУДЕБНОГО ЗАСЕДАНИЯ
  10. Глава 60. СЧАСТЬЕ ВДРУГ ПОВЕРНУЛОСЬ СПИНОЙ
  11. Действительно ли обратные связи могут делать это?
  12. Дизайнерская часть

Пусть А и С – квадратные матрицы порядка . Решить матричное уравнение

, (2.1)

это значит найти такую квадратную матрицу В, что АВ=С. При этом В называется решением матричного уравнения (2.1).

Непосредственно из определения операции умножения матриц вытекает следующее утверждение.

Утверждение 2.1. Матрица В является решением матричного уравнений (2.1), если и только если ее столбцы , , … являются соответственно решениями систем линейных уравнений , , …, , где , …, - столбцы матрицы С,

Матричному уравнению (2.1) можно поставить в соответствие расширенную матрицу К=(АС) размера , приписав справа к матрице А матрицу С. В то же время любой матрице К размера можно однозначно сопоставить матричное уравнение вида (2.1), положив, что первые столбцов в К составляют матрицу А, последние столбцов – матрицу С. В этих случаях матрицу К и матричное уравнение (2.1) будем называть соответствующими.

Утверждение 2.1 фактически доказано при доказательстве теоремы 2.1.

Из утверждений 2.1 и 1.2 вытекает следующее утверждение.

Утверждение 2.2. Элементарные преобразования расширенных матриц не изменяют множеств решений соответствующих матричных уравнений.

Теорема 2.1. Пусть в уравнении (2.1) матрица С является единичной, т.е. С=Е. Тогда уравнение (2.1) имеет решение, если и только если матрица А невырожденная.

Доказательство. Согласно следствию 1. 6 существует такая последовательность элементарных преобразований строк матрицы А, которая приводит матрицу А к единичной матрице того же порядка в случае невырожденности А, либо к некоторой матрице того же порядка, содержащей хотя бы одну нулевую строку, в случае вырожденности А. Применим последовательность к строкам расширенной матрицы АЕ. После того как «левая половина» этой матрицы приведется к Е, правая приведется к некоторой матрице . В силу утверждения 2.2 пары матричных уравнений и (или и ) имеют одинаковые множества решений. Рассмотрим первую пару. Очевидно, решением уравнения является матрица (см. теорему 1.12) и, следовательно, является решением уравнения . Рассмотрим вторую пару. Предположим, что в -я строка нулевая. Тогда в произведении -я строка также будет нулевой, что невозможно, ибо , а матрица получена из невырожденной матрицы Е элементарными преобразованиями и потому в силу теоремы 1.8 не может содержать нулевых строк. Теорема доказана.

Следствие 2.1. Пусть А и Е – квадратные матрицы одного порядка. Если матричное уравнение

(2.2)

имеет решение, то оно единственное.

Определение. Обратной матрицей для матрицы А называется решение матричного уравнения (2.2). Обратная для А матрица обозначается .

Следствие 2.2. Невырожденные матрицы, и только они, имеют обратные.

Следствие 2.3. Матрица, обратная для , есть А, т.е. = .

Доказательство. Если применить в обратном порядке последовательность элементарных преобразований (см. доказательство теоремы 2.1) к строкам матрицы , то получим матрицу , откуда следует, что А является обратной для (см. далее приведенное практическое правило построения обратной матрицы).

Следствие 2.4. Пусть - невырожденная матрица. Тогда единственным решением матричного уравнений (2.1) является .

Доказательство. (см. теорему 2.1), откуда - решение матричного уравнения (2.1). Предположим теперь, что имеется еще одна матрица такая, что . Умножим обе части этого равенства слева на матрицу (такая матрица существует в силу следствия 2.1):

или , или .

Следствие 2.5. Пусть - невырожденная матрица порядка . Тогда для любого вектора-столбца размерности система уравнений имеет единственное решение .

Доказательство аналогично предыдущему.

Из доказательства теоремы 2.1 вытекает следующее практическое правило проверки матрицы на невырожденность и построения обратной матрицы: с помощью элементарных преобразований строк расширенной матрицы АЕ привести «левую половину» к единичной матрице (если в ходе этого процесса образуется хотя бы одна нулевая строка в этой «левой половине», то А вырожденная); тогда на место первоначально приписанной матрицы Е окажется матрица .

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)