АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Межмолекулярные связи в горных породах

Читайте также:
  1. IV. Алгоритм действий командира (начальника) при увольнении военнослужащего в связи с невыполнением им условий контракта
  2. V. Регламент переговоров по поездной радиосвязи
  3. А потом он обратился к ним с увещанием в связи с тем, что они смеялись, когда кто-нибудь испускал ветры, и сказал: «Почему некоторые из вас смеются над тем, что делают и сами?»
  4. Анализ взаимосвязи спроса и предложения
  5. Анализ взаимосвязи уровня социального интеллекта и самооценки в подростковом возрасте
  6. Анализ и связи понятия Паразит
  7. Анализ относительных показателей (коэффициентов) - расчет отношений между отдельными позициями отчета или позициями разных форм отчетности, определение взаимосвязи показателей.
  8. Б) матчи, в которых футболист не мог принять участие в связи с травмой или болезнью, которые не были напрямую связаны с его профессиональной деятельностью в качестве футболиста...
  9. Белое вещество и кора мозжечка: нисходящие, восходящие, моховидные, лазящие и параллельные нервные волокна, межнейрональные связи.
  10. Беспроводные каналы связи
  11. Биоэнергетические упражнения по установлению связи с землей.
  12. В детском саду введен карантин в связи с заболеваемостью краснухой. От чего будет зависеть срок продолжительности карантина?

 

Понятие молекулы по отношению к твердой фазе является неопределенным. Фактически молекулой можно считать кристалл, который может достигать величины нескольких метров. Горные породы (естественные твердые тела) и металлы (искусственные твердые тела) состоят из зерен - обломков кристаллов. Твердая фаза дисперсных систем состоит из мелких частиц - также обломков кристаллов. Поэтому в дальнейшем под молекулой твердого тела будем понимать его частицы и зерна - обломки кристаллов различной величины.

Межмолекулярное воздействие - это взаимодействие твердых частиц между собой, взаимодействие молекул жидкости и взаимодействие молекул жидкости с твердыми частицами.

Межмолекулярное взаимодействие обусловлено электромагнитным взаимодействием электрона и ядер одной молекулы с электронами и ядрами другой, подобно атомному взаимодействию. Энергия межмолекулярных взаимодействий складывается из трех видов взаимодействия: ориентационного, индукционного и дисперсного.

Ориентационное взаимодействие молекул обусловливается наличием дипольного момента. Сила притяжения между молекулами зависит от ориентации молекул друг относительно друга (отсюда в название взаимодействия). Максимальная сила взаимодействия молекул наблюдается в случае, когда их дипольные моменты сориентированы в одном направлении, по одной линии. Энергия притяжения для двух молекул приблизительно может быть выражена формулой:

здесь К - коэффициент, зависящий or температуры; mА, mВ - дипольные моменты молекул; r - расстояние между молекулами.

Индукционное взаимодействие обусловлено взаимодействием электронного дипольного момента одной молекулы с индуцированным ей дипольным моментом другой молекулы. Причем последняя может быть неполярной молекулой. Энергия индуцированного взаимодействия приблизительно может быть выражена формулой:

где, aА и aВ – поляризуемость молекул

Дисперсионное взаимодействие молекул обусловлено квантово-механичёскими флуктуациями электронной плотности. При движении электронов вокруг ядер появляется моменты смещения зарядов в молекуле и образование мгновенных диполей, которые индуцируют мгновенные диполи в соседней молекуле, что ведет к их взаимодействию. Энергия дисперсного взаимодействия определяется по формуле:

здесь IA и IB - потенциалы ионизации молекул.

Наряду с притяжением между молекулами на близком расстоянии действуют силы отталкивания. Причём в непосредственной близости центров молекул силы отталкивания значительно превышают силы притяжения. Энергия сил отталкивания определяется по формуле

С удалением от центра энергия отталкивания быстро убывает и поэтому на расстоянии свыше 5 А° ею можно пренебречь.

Молекулярное взаимодействие, как мы видим, с увеличением расстояния между молекулами быстро убывает. Радиус действия молекулярных сил превышает 100 нм. Максимальная энергия молекулярного взаимодействия наблюдается на расстоянии между молекулами порядка 2-4 А°.

По типу межмолекулярных связей (связей между частицами, слагающими горную породу) все горные породы можно подразделить на четыре группы:

-скальные с поляризационным (диполь-дипольным) взаимодействием зёрен;

- мерзлые, сцементированные льдом;

- хемогенные с ионным (кулоновским) взаимодействием частиц;

- глинистые с водоплёночными связями частиц;

- раздельно-зернистые, практически не имеющие связей между зёрнами.

К скальным породам относят высокопрочные устойчивые горные породы магматического, осадочного и метаморфического происхождения.

Магматические горные породы представляют собой совокупность зерен, связанных друг с другом молекулярными связями.

Кристалл скальных пород - это совокупность закономерно расположенных в пространстве атомов, связанных друг с другом прочными ковалентными и ионно-ковалентными связями. Образуются такие кристаллы обычно при высоких температурах, что и обуславливает их высокую прочность.

Прочность химических связей между атомами кристаллической решетки, как отмечено выше, зависит от заряда (валентности) атомов, слагающих эту решетку, их электроотрицательности и расстояния между ними. В зависимости от заряда она может колебаться в пределах от 100 до 1000 кДж/моль

Кристаллы обладают анизотропными свойствами. Их прочность по различным направлениям не одинакова. Наименьшей прочностью кристаллы обладают по направлениям, по которым расстояния между атомами в кристаллической решетке оказываются максимальными (по плоскостям спайности). По этим плоскостям кристаллы легче всего раскалываются.

Прочность молекулярных связей между зернами кристаллов зависит от расстояния между зернами. Как отмечено выше, кристаллизация магматических пород происходит при больших температурах при избытке материала для кристаллизации. В результате наличия большого количества центров кристаллизации рост кристаллов ограничивается соседними кристаллами. Расстояния между зернами оказываются минимальными.

Из молекулярных сил, действующих между твердыми частицами, наиболее универсальными и существенными являются силы дисперсионного взаимодействия. Вследствие аддитивности дисперсионных сил взаимодействие между частицами (зернами) можно определить путем интегрирования сил взаимодействия между контактирующими атомами обеих частиц. Такой приближенный расчет для пластин впервые был проведен Буром и Гамакером.

За исходную формулу было принято уравнение энергии притяжения одной молекулы (атома) к поверхности частиц [1]

,

где, х - расстояние между атомами одной частицы и поверхностью другой; С - константа; n - число атомов.

Если обозначить расстояние между атомом одной частицы и поверхностью другой частицы через

х = r + h,

где h - расстояние между частицами; r - расстояние атома от поверхности частиц, а число взаимодействующих атомов через n, то приращение энергии молекулярного притяжения на единицу площади частиц составит

После интегрирования получим,

где А - константа Гамакера, имеющая значение порядка 10-19 Дж.

На оснований формулы Бура и Гамакера можно определить (ориентировочно) прочность молекулярных связей между зернами.

Удельная сила взаимодействия между зернами (прочность межмолекулярных связей) исходя из предыдущего уравнения будет

Минимальное расстояние между зернами горной породы равно сумме радиусов соприкасающихся атомов.

Атомные радиусы для различных атомов изменяются в широких пределах: от 60-80 пм (В, С, О) до 200 пм и более (Са, Ва, К).

Принимая h= 3×10-10м, получим

,

что выше прочности самых прочных горных пород, таких как кварц.

Для многих горных пород прочность межмолекулярных связей между зернами оказывается выше прочности кристалла. Поэтому прочность мелкозернистых горных пород выше прочности крупнозернистых пород.

Осадочные (обломочные) горные породы также представляют собой совокупность зерен кристаллов, но в отличие от магматических горных пород они не имеют непосредственных контактов между собой. Скальные осадочные породы образовались в результате цементирования раздельно-зернистых горных пород тонкодиспергированным материалом различного состава. Межмолекулярное взаимодействие зерен зависит от расстояния между ними. На расстояниях, превышающих 10 нм, межмолекулярное взаимодействие резко понижается, а на расстояниях менее нескольких сотен нанометров падает до нуля. Поэтому в раздельнозернистых горных породах, в которых величина контакта зерен ничтожно мала, расстояние между поверхностями соседних зерен велико, молекулярное взаимодействие зерен отсутствует. В тонкодиспергированных системах (цементе) частицы имеют большую контактную поверхность и способны приблизиться на меньшее расстояние друг к другу и минеральным зернам. В результате этого межмолекулярное взаимодействие между ними увеличивается, а зерна оказываются связанными цементом. Прочность таких связей зависит от величины частиц цемента и их уплотнения.

При большом давлении на горную породу, (которое наблюдается, например, при динамометаморфизме), происходит уплотнение горной породы, уменьшение расстояния между минеральными зернами и зернами цемента, молекулярное взаимодействие между ними возрастает, возрастает и прочность метаморфизованных горных пород.

Сближению контактов между зернами способствует и повышение температуры. Повышение температуры увеличивает скорость и величину трансляции атомов, слагающих зерна горной порода. Объем зерен при нагревании вследствие этого увеличивается, а расстояние между ними снижается, что в свою очередь ведет к повышению межмолекулярного взаимодействия, сохраняющегося затем и при понижении температуры.

Разновидностью горных пород с цементным типом связи являются мерзлые горные породы, сцементированные льдом.

Вторую группу горных пород составляют хемогенные (соленосные) отложения, значительно уступающие по прочности скальным породам.

Хемогенные горные породы образуются в результате их кристаллизации из водных растворов различных солей, поэтому легко могут растворяться в воде в отличие от скальных пород. Они представляют собой кристаллические тела и скопления сцементированных зерен кристаллов с ионной пространственной решеткой. Связь между атомами осуществляется исключительно кулоновскими силами притяжения разноименно заряженных ионов. Прочность такой связи невелика и зависит от зарядов ионов, составляющих решетку. Кулоновские силы действуют на значительные расстояния, поэтому кристаллизация таких минералов может происходить при низких температурах, а горные породы (особенно образованные низковалентными ионами) в большинстве своем представлены кристаллическими телами.

Вследствие малой прочности ионных связей хемогенные горные породы могут деформироваться и течь.

Третью группу горных пород представляют глинистые породы.

Глинистые породы по объему занимают второе место после скальных. В комплексе осадочных отложений [4] глинистые породы составляют 80-82%.

К глинистым породам относят [2] горные породы, представляющие собой комплекс минеральных обломков (частиц) различного состава и различных фракций, связанных между собой пленками воды (глины) или затвердевшей кремнекислоты (аргиллиты).

Наряду с глинистой фракцией глинистые породы содержат пылеватую (размер частиц 0.002-0,05 мм), песчаную (размер частиц 0,05-2,0 мм) или грубообломочную (размер частиц 2,0 мм) фракции. Эти фракции чаще всего представлены кварцем, полевыми шпатами и другими прочными, трудно разрушаемыми минералами.

Пылеватые частицы по своей форме близки к сферической форме, благодаря чему они подвижны и легко переходят во взвешенное состояние.

Песчаная и грубообломочная фракции могут быть как окатанными (округлой формы), так и неокатанными (угловатой формы).

В соответствии с содержанием глинистой фракции глинистые породы подразделяются на глины, суглинки и супеси.

Глины содержат глинистых частиц не менее 30%.: Они являются наиболее пластичными и наименее водопроницаемыми. Суглинки в своем составе содержат от 10 до 30% глинистой фракции, а супеси менее 10%. Супеси - слабопластинчатые горные породы с высокой водопроницаемостью.

Повышенное содержание пылеватой фракции снижает водостойкость, внутреннее трение и прочность горной породы. Песчаная и грубообломочная фракции, наоборот, повышают жесткость и внутреннее трение.

Содержание в глинистых породах глинистой фракции с огромной удельной поверхностью, а значит с огромной поверхностной энергией обуславливает особый тип связей между частицами. Эта связь осуществляется через пленки воды, удерживаемые электромолекулярными силами притяжения. У поверхности частиц эти силы достигают сотен тысяч МПа [2]. С удалением от частиц эти силы убывают обратно пропорционально седьмой степени расстояния. Толщина и прочность пленки зависят от химического состава минеральных частиц, наличия функциональных групп и их гидрофильности (полярности), а прочность глины в целом от толщины пленки и сшивающих катионов глины.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.)