АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ТЕПЛОВЫЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ

Читайте также:
  1. B. группа: веществ с общими токсическими и физико-химическими свойствами.
  2. B. метода разделения смеси веществ, основанный на различных дистрибутивных свойствах различных веществ между двумя фазами — твердой и газовой
  3. I. ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ВОДЫ И ВОДЯНОГО ПАРА
  4. II.Тепловые явления (25 часов)
  5. Q.3. Магнитные свойства кристаллов.
  6. XI. ПРИСПОСОБЛЕНИЕ И ДРУГИЕ ЭЛЕМЕНТЫ, СВОЙСТВА. СПОСОБНОСТИ И ДАРОВАНИЯ АРТИСТА
  7. А. Общие химические свойства пиррола, фурана и тиофена
  8. А. ОСНОВНЫЕ СВОЙСТВА КОРРЕКЦИЙ
  9. Аминокислоты винограда и вина. Состав, свойства аминокислот.
  10. Анализ издержек начинается с построения их классификаций, которые помогут получить комплексное представление о свойствах и основных характеристиках.
  11. Арифметическая середина и ее свойства
  12. Б) не обладающие физическими свойствами, но приносящие постоянно или длительное время доход

Тепловое движение в кристаллах из-за сильного взаимодействия ограничивается только колебаниями частиц около узлов кристаллической решетки. Амплитуда этих колебаний обычно не превращает 10-11 м, т.е. составляет всего 5-7% периода решетки вдоль соответствующего направления. Характер этих колебаний весьма непрост, так как определяется силами взаимодействия колеблющейся частицы со всеми своими соседями.

Рост температуры означает увеличение энергии движения частиц. Это в свою очередь, означает увеличение амплитуды колебаний частиц и объясняет расширение кристаллических твердых тел при нагревании.

l t= l 0(1 + αt0),

где l t и l 0 – линейные размеры тела при температурах t0 и 00С, α – коэффици-ент линейного расширения. Для твёрдых тел α имеет порядок 10-5 – 10-6 К-1. В результате линейного расширения увеличивается и объём тела:

Vt = V0(1 + βt0),

здесь β – коэффициент объёмного расширения. β = 3α в случае изотропного расширения. Монокристаллические тела, будучи анизотропными, имеют три разных значения α.

Каждая частица, совершающая колебания, имеет три степени свободы колебательного движения. Учитывая, что, кроме кинетической, частицы обладают еще и потенциальной энергией, на одну степень свободы частиц твёрдых тел следует приписать энергию ε = кТ. Теперь для внутренней энергии моля будем иметь:

 

Uμ = 3NAkT = 3RT,

а для молярной теплоемкости:

Сμ,V =3R.

 

Т.е. молярная теплоемкость химически простых кристаллических тел одинакова и не зависит от температуры. Это закон Дюлонга-Пти.

Как показал эксперимент, этот закон достаточно хорошо выполняется, начиная с комнатных температур. Объяснения отклонениям от закона Дюлонга-Пти при низких температурах были даны Эйнштейном и Дебаем в квантовой теории теплоемкости. Было показано, что энергия, которая приходится на одну степень свободы не является постоянной величиной, а зависит от температуры и частоты колебаний.

 

 

РЕАЛЬНЫЕ КРИСТАЛЛЫ. ДЕФФЕКТЫ В КРИСТАЛАХ

Реальные кристаллы обладают рядом нарушений идеальной структуры, которые называются дефектами кристаллов:

а) точечные дефекты –

· дефекты Шотки (незанятые частицами узлы);

· дефекты Френкеля (смещение частиц из узлов в междуузлия);

· примеси (внедренные чужеродные атомы);

б) линейные – краевые и винтовые дислокации. Это локальные нерегулярно

сти в расположения частиц

· из-за недостроенности отдельных атомных плоскостей

· или из-за нарушений в последовательности их застройки;

в) плоскостные – границы между кристаллитами, ряды линейных дислокаций.

 

Фазовые переходы. ДиаграммА состояния. Тройная точка.

Фазой называется термодинамическое равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества. Переход вещества из одной фазы в другую – фазовый переход - всегда связан с качественными изменениями свойств тела. Примером фазовых переходов могут служить изменения агрегатного состояния. Но понятие «фазовый переход» шире, т.к. оно включает и переход вещества из одной модификации в другую при сохранении агрегатного состояния (полиморфизм), например, превращение алмаза в графит.

Различают два вида фазовых переходов:

Фазовый переход 1 рода – сопровождается поглощением или выделением теплоты, изменением объема и протекает при постоянной температуре. Примеры: плавление, кристаллизация, испарение, сублимация (возгонка) и др.

Фазовые переходы 2 рода – протекают без выделения или поглощения тепла, с сохранением величины объема, но скачкообразным изменением теплоемкости. Примеры: переход ферромагнитных минералов при определенных значениях давления и температуры в парамагнитное состояние (железо, никель); переход некоторых металлов и сплавов при температуре близкой к 00К в сверхпроводящее состояние (ρ = 0 Ом∙м) и др.

Для химически однородного вещества понятие фазы совпадает с понятием агрегатное состояние. Рассмотрим для такой системы фазовые превращения, используя для наглядности диаграмму состояния. На ней в координатах р и Т задается зависимость между температурами фазовых переходов и давлением. Эти зависимости в виде кривых испарения (ОИ), плавления (ОП) и сублимации (ОС) и образуют диаграмму состояния.

Точка О пересечения кривых определяет условия (значения Т и р), при которых все три агрегатные состояния вещества находятся в термодинамическом равновесии.

По этой причине она называется тройной точкой. Например, тройная точка воды является одной из реперных точек температурной шкалы Цельсия (00С). Как следует из уравнения Клапейрона – Клаузиуса характер зависимости Т = f(р) для перехода твердое тело – жидкость (кривые ОП) может быть разным: Если вещество при переходе в жидкую фазу увеличивает объем (вода, висмут, германий, чугун …), то ход этой зависимости представлен на рис. 2а. Для веществ, уменьшающих объём при переходе в жидкую фазу, зависимость имеет вид показанный на рис. 2б.

Кривая испарения заканчивается критической точкой – К. Как видно из диаграммы, существует возможность непрерывного перехода жидкости в газообразную фазу без пересечения кривой испарения, т.е. без присущих такому переходу фазовых превращений.

При давлении меньшим, чем ртр.тчк., вещество может существовать только в двух фазах: твердой и газообразной. Причем, при температурах, меньших Ттр.тчк., возможен переход из твердого состояния в газ минуя жидкую фазу. Такой процесс называется сублимацией или возгонкой. Удельная теплота сублимации

τсуб = λпл + rисп

 

 

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)