АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Выборочный метод понятие виды выборки

Читайте также:
  1. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  2. I. Методические основы
  3. I. Понятие и значение охраны труда
  4. I. Понятие общества.
  5. I. Предмет и метод теоретической экономики
  6. II. Метод упреждающего вписывания
  7. II. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ВЫПОЛНЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ
  8. II. Методы непрямого остеосинтеза.
  9. II. ОСНОВНОЕ ПОНЯТИЕ ИНФОРМАТИКИ – ИНФОРМАЦИЯ
  10. II. Понятие социального действования
  11. II. Проблема источника и метода познания.
  12. II. УЧЕБНО-МЕТОДИЧЕСКАЯ КАРТА ДИСЦИПЛИНЫ

Общее понятие о выборочном методе. Множество всех единиц совокупности, обладающих определенным признаком и подлежащих изучению, носит в статистике название генеральной совокупности.

На практике по тем или иным причинам не всегда возможно или же нецелесообразно рассматривать всю генеральную совокупность. Тогда ограничиваются изучением лишь некоторой части ее, конечной целью которого является распространение полученных результатов на всю генеральную совокупность, т. е. применяют выборочный метод.

Для этого из генеральной совокупности особым образом отбирается часть элементов, так называемая выборка, и результаты обработки выборочных данных (например, средние арифметические значения) обобщаются на всю совокупность.

Теоретической основой выборочного метода является закон больших чисел. В силу этого закона при ограниченном рассеивании признака в генеральной совокупности и достаточно большой выборке с вероятностью, близкой к полной достоверности, выборочная средняя может быть сколь угодно близка к генеральной средней. Закон этот, включающий в себя группу теорем, доказан строго математически. Таким образом, средняя арифметическая, рассчитанная по выборке, может с достаточным основанием рассматриваться как показатель, характеризующий генеральную совокупность в целом.

Разумеется, не всякая выборка может быть основой для характеристики всей совокупности, к которой она принадлежит. Таким свойством обладают лишь репрезентативные (представительные) выборки, т. е. выборки, которые правильно отражают свойства генеральной совокупности. Существуют способы, позволяющие гарантировать достаточную репрезентативность выборки. Как доказано в ряде теорем математической статистики, таким способом при условии достаточно большой выборки является метод случайного отбора элементов генеральной совокупности, такого отбора, когда каждый элемент генеральной совокупности имеет равный с другими элементами шанс попасть в выборку. Выборки, полученные таким способом, называются случайными выборками. Случайность выборки является, таким образом, существенным условием применения выборочного метода

Области применения выборочного метода в исторических исследованиях. Сфера приложения этого метода в изучении истории обширна. Во-первых, историки могут применять выборочный метод при проведении всякого рода обследований с целью изучения различных явлений и процессов современности. Правда, сейчас такими исследованиями больше занимаются социологи, чем историки, хотя именно историки могут проводить конкретно-социологические обследования, опираясь на исторические данные, и добиваться наибольшего эффекта таких исследований.



Во-вторых, историки нередко имеют дело с сохранившимися данными ранее проведенных собственно выборочных обследований. Такие обследования стали все более широко применяться с конца XIX в. Так, при проведении ряда сплошных обследований и переписей выборочно собирались и собираются сведения по более широкой программе. Многие данные собирались только выборочно. Наиболее интересными среди них для историков являются описания разного рода хозяйственных комплексов (крестьянских хозяйств, промышленных предприятий, колхозов, совхозов и т. д.), а также бюджетные и другого рода обследования различных слоев населения.

В-третьих, в распоряжении историков имеется значительное число разнообразных первичных сплошных массовых данных, полная обработка которых весьма затруднительна даже при применении современной вычислительной техники. При изучении их может быть применен выборочный метод. Такие материалы имеются по всем периодам истории, но особенно много их по истории XIX—XX вв.

Наконец, историкам очень часто приходится иметь дело с частичными данными, так называемыми естественными выборками. При обработке этих данных также может быть применен выборочный метод. Характер естественных выборок бывает различным. Прежде всего они могут представлять собой сохранившийся остаток некогда существовавшей более или менее полной совокупности данных. Так, многие актовые материалы, документы текущего делопроизводства и отчетности представляют остатки в прошлом обширных и систематических массивов данных. Далее, при систематическом сборе тех или иных сведений отдельные показатели могли учитываться лишь частично (именно частично, а не выборочно). Так, при составлении «Экономических примечаний» к Генеральному межеванию второй половины XVIII в., которое охватило большую часть территории страны, ряд показателей (количество населения, площадь земельных угодий и др.) учитывался повсеместно, а некоторые важные данные (о величине барских запашек, размерах оброка) были собраны в силу целого ряда причин лишь частично. Многие сведения вообще собирались только частично. Это прежде всего относится к тем из них, которые не являлись нормативными и сбором которых занимались различные местные органы, научные и общественные организации и отдельные лица.

Итак, области выборочного метода в исторических исследованиях весьма обширны, а задачи, которые следует при этом решать, различны.

Так, при организации выборочного обследования и формировании выборки из имеющихся сплошных данных исследователь располагает определенной свободой маневра для обеспечения репрезентативности выборок. При этом он может опираться на хорошо разработанную в математической статистике теорию, методику и технику получения таких выборок.

При оперировании же данными ранее проведенных выборочных обследований следует проверить, в какой мере они были выполнены в соответствии с требованиями, предъявляемыми к выборочному методу. Для этого надо знать, как было проведено это обследование. Чаще всего это вполне можно сделать.

И совсем иное дело — естественные выборки данных, с которыми очень часто имеет дело историк. Прежде всего необходимо доказать их репрезентативность. Без этого экстраполяция показателей выборок на всю изучаемую совокупность будет необоснованной. Поскольку пока еще нет достаточно надежных методов математической проверки репрезентативности естественных выборок, то решающую роль здесь играет выяснение истории их возникновения и содержательный анализ имеющихся данных.

Виды выборочного изучения. В зависимости от того, как осуществляется отбор элементов совокупности в выборку, различают несколько видов выборочного обследования. Отбор может быть случайным, механическим, типическим и серийным.

Случайным является такой отбор, при котором все элементы генеральной совокупности имеют равную возможность быть отобранными. Другими словами, для каждого элемента генеральной совокупности обеспечена равная вероятность попасть в выборку.

Требование случайности отбора достигается на практике с помощью жребия или таблицы случайных чисел.

При отборе способом жеребьевки все элементы генеральной совокупности предварительно нумеруются и номера их наносятся на карточки. После тщательной перетасовки из пачки любым способом (подряд или в любом другом порядке) выбирается нужное число карточек, соответствующее объему выборки. При этом можно либо откладывать отобранные карточки в сторону (тем самым осуществляется так называемый бесповторный отбор), либо, вытащив карточку, записать ее номер и возвратить в пачку, тем самым давая ей возможность появиться в выборке еще раз (повторный отбор). При повторном отборе всякий раз после возвращения карточки пачка должна быть тщательно перетасована.

Способ жеребьевки применяется в тех случаях, когда число элементов всей изучаемой совокупности невелико. При большом объеме генеральной совокупности осуществление случайного отбора методом жеребьевки становится сложным. Более надежным и менее трудоемким в случае большого объема обрабатываемых данных является метод использования таблицы случайных чисел.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)