АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Синтаксис ассемблера. Предложения, составляющие программу, могут представлять собой синтаксическую конструкцию, соответствующую команде

Читайте также:
  1. Выразительные средства синтаксиса
  2. Грамматика (синтаксис)
  3. Методика изучения раздела «Синтаксис».
  4. Наследование. Понятие наследования. Базовый и производные (порожденный) классы. Синтаксис определения производного класса. Подстановка конструкторов и методов базового класса.
  5. Перегрузка операций. Понятие перегрузки операторов. Синтаксис перегрузки операции. Перегрузка бинарных операций, операций сравнения.
  6. Расширенный синтаксис вызова функций
  7. Синтаксис
  8. Синтаксис
  9. Синтаксис
  10. Синтаксис оператора SELECT
  11. Синтаксис – це розділ граматики, що вивчає будову і значення словосполучень і речень, способи зв'язку слів у словосполученні і реченні.

Предложения, составляющие программу, могут представлять собой синтаксическую конструкцию, соответствующую команде, макрокоманде, директиве или комментарию. Для того чтобы транслятор ассемблера мог распознать их, они должны формироваться по определенным синтаксическим правилам. Для этого лучше всего использовать формальное описание синтаксиса языка наподобие правил грамматики. Наиболее распространенные способы подобного описания языка программирования – синтаксические диаграммы и расширенные формы Бэкуса-Наура. Для практического использования более удобны синтаксические диаграммы. К примеру, синтаксис предложений ассемблера можно описать с помощью синтаксических диаграмм, показанных на следующих рисунках.

Рис. 4. Формат предложения ассемблера


Рис. 5. Формат директив


Рис. 6. Формат команд и макрокоманд

 

На этих рисунках:

1) имя метки – идентификатор, значением которого является адрес первого байта того предложения исходного текста программы, которое он обозначает;

2) имя – идентификатор, отличающий данную директиву от других одноименных директив. В результате обработки ассемблером определенной директивы этому имени могут быть присвоены определенные характеристики;

3) код операции (КОП) и директива – это мнемонические обозначения соответствующей машинной команды, макрокоманды или директивы транслятора;

4) операнды – части команды, макрокоманды или директивы ассемблера, обозначающие объекты, над которыми производятся действия. Операнды ассемблера описываются выражениями с числовыми и текстовыми константами, метками и идентификаторами переменных с использованием знаков операций и некоторых зарезервированных слов.

Как использовать синтаксические диаграммы? Очень просто: для этого нужно всего лишь найти и затем пройти путь от входа диаграммы (слева) к ее выходу (направо). Если такой путь существует, то предложение или конструкция синтаксически правильны. Если такого пути нет, значит, эту конструкцию компилятор не примет. При работе с синтаксическими диаграммами обращайте внимание на направление обхода, указываемое стрелками, так как среди путей могут быть и такие, по которым можно идти справа налево. По сути, синтаксические диаграммы отражают логику работы транслятора при разборе входных предложений программы.

Допустимыми символами при написании текста программ являются:

1) все латинские буквы: А – Z, а – z. При этом заглавные и строчные буквы считаются эквивалентными;

2) цифры от 0 до 9;

3) знаки?, @, S, _, &;

4) разделители.

Предложения ассемблера формируются из лексем, представляющих собой синтаксически неразделимые последовательности допустимых символов языка, имеющие смысл для транслятора.

 

Лексемами являются следующие.

1. Идентификаторы – последовательности допустимых символов, использующиеся для обозначения таких объектов программы, как коды операций, имена переменных и названия меток. Правило записи идентификаторов заключается в следующем: идентификатор может состоять из одного или нескольких символов. В качестве символов можно использовать буквы латинского алфавита, цифры и некоторые специальные знаки – _,?, $, @. Идентификатор не может начинаться символом цифры. Длина идентификатора может быть до 255 символов, хотя транслятор воспринимает лишь первые 32, а остальные игнорирует. Регулировать длину возможных идентификаторов можно с использованием опции командной строки mv. Кроме этого, существует возможность указать транслятору на то, чтобы он различал прописные и строчные буквы либо игнорировал их различие (что и делается по умолчанию). Для этого применяются опции командной строки /mu, /ml, /mx.

2. Цепочки символов – последовательности символов, заключенные в одинарные или двойные кавычки.

3. Целые числа в одной из следующих систем счисления: двоичной, десятичной, шестнадцатеричной. Отождествление чисел при записи их в программах на ассемблере производится по определенным правилам:

1) десятичные числа не требуют для своего отождествления указания каких-либо дополнительных символов, например 25 или 139;

2) для отождествления в исходном тексте программы двоичных чисел необходимо после записи нулей и единиц, входящих в их состав, поставить латинское «b», например 10010101 b;

3) Шестнадцатеричные числа имеют больше условностей при своей записи:

а) во-первых, они состоят из цифр 0…9, строчных и прописных букв латинского алфавита а, b, с, d, е, Гили Д В, С, D, Е, Е

б) во-вторых, у транслятора могут возникнуть трудности с распознаванием шестнадцатеричных чисел из-за того, что они могут состоять как из одних цифр 0…9 (например, 190845), так и начинаться с буквы латинского алфавита (например, efl5). Для того, чтобы «объяснить» транслятору, что данная лексема не является десятичным числом или идентификатором, программист должен специальным образом выделять шестнадцатеричное число. Для этого на конце последовательности шестнадцатеричных цифр, составляющих шестнадцатеричное число, записывают латинскую букву «h». Это обязательное условие. Если шестнадцатеричное число начинается с буквы, то перед ним записывается ведущий нуль: 0 efl5 h.

Таким образом, мы разобрались с тем, как конструируются предложения программы ассемблера. Но это лишь самый поверхностный взгляд.

Практически каждое предложение содержит описание объекта, над которым или при помощи которого выполняется некоторое действие. Эти объекты называются операндами. Их можно определить так: операнды – это объекты (некоторые значения, регистры или ячейки памяти), на которые действуют инструкции или директивы, либо это объекты, которые определяют или уточняют действие инструкций или директив.

Операнды могут комбинироваться с арифметическими, логическими, побитовыми и атрибутивными операторами для расчета некоторого значения или определения ячейки памяти, на которую будет воздействовать данная команда или директива.

Рассмотрим подробнее характеристику операндов в нижеприведенной классификации:

1) постоянные или непосредственные операнды – число, строка, имя или выражение, имеющие некоторое фиксированное значение. Имя не должно быть перемещаемым, т. е. зависеть от адреса загрузки программы в память. К примеру, оно может быть определено операторами equ или =;

2) адресные операнды, задают физическое расположение операнда в памяти с помощью указания двух составляющих адреса: сегмента и смещения (рис. 7);

Рис. 7. Синтаксис описания адресных операндов

 

3) перемещаемые операнды – любые символьные имена, представляющие некоторые адреса памяти. Эти адреса могут обозначать местоположение в памяти некоторых инструкций (если операнд – метка) или данных (если операнд – имя области памяти в сегменте данных).

Перемещаемые операнды отличаются от адресных тем, что они не привязаны к конкретному адресу физической памяти. Сегментная составляющая адреса перемещаемого операнда неизвестна и будет определена после загрузки программы в память для выполнения.

Счетчик адреса – специфический вид операнда. Он обозначается знаком S. Специфика этого операнда в том, что когда транслятор ассемблера встречает в исходной программе этот символ, то он подставляет вместо него текущее значение счетчика адреса. Значение счетчика адреса или, как его иногда называют, счетчика размещения представляет собой смещение текущей машинной команды относительно начала сегмента кода. В формате листинга счетчику адреса соответствует вторая или третья колонка (в зависимости от того, присутствует или нет в листинге колонка с уровнем вложенности). Если взять в качестве примера любой листинг, то видно, что при обработке транслятором очередной команды ассемблера счетчик адреса увеличивается на длину сформированной машинной команды. Важно правильно понимать этот момент. К примеру, обработка директив ассемблера не влечет за собой изменения счетчика. Директивы, в отличие от команд ассемблера, – это лишь указания транслятору на выполнение определенных действий по формированию машинного представления программы, и для них транслятором не генерируется никаких конструкций в памяти.

При использовании подобного выражения для перехода не забывайте о длине самой команды, в которой это выражение используется, так как значение счетчика адреса соответствует смещению в сегменте команд данной, а не следующей за ней команды. В нашем примере команда jmp занимает 2 байта. Но будьте осторожны, длина команды зависит от того, какие в ней используются операнды. Команда с регистровыми операндами будет короче команды, один из операндов которой расположен в память. В большинстве случаев эту информацию можно получить, зная формат машинной команды и анализируя колонку листинга с объектным кодом команды;

4) регистровый операнд – это просто имя регистра. В программе на ассемблере можно использовать имена всех регистров общего назначения и большинства системных регистров;

5) базовый и индексный операнды. Этот тип операндов используется для реализации косвенной базовой, косвенной индексной адресации или их комбинаций и расширений;

6) структурные операнды используются для доступа к конкретному элементу сложного типа данных, называемого структурой.

Записи (аналогично структурному типу) используются для доступа к битовому полю некоторой записи.

Операнды являются элементарными компонентами, из которых формируется часть машинной команды, обозначающая объекты, над которыми выполняется операция. В более общем случае операнды могут входить как составные части в более сложные образования, называемые выражениями. Выражения представляют собой комбинации операндов и операторов, рассматриваемые как единое целое. Результатом вычисления выражения может быть адрес некоторой ячейки памяти или некоторое константное (абсолютное) значение.

Возможные типы операндов мы уже рассмотрели. Перечислим теперь возможные типы операторов ассемблера и синтаксические правила формирования выражений ассемблера, и дадим краткую характеристику операторов.

1. Арифметические операторы. К ним относятся:

1) унарные «+» и «—»;

2) бинарные «+» и «—»;

3) умножения «*»;

4) целочисленного деления «/»;

5) получения остатка от деления «mod».

Эти операторы расположены на уровнях приоритета 6,7,8 в таблице 4.

Рис. 8. Синтаксис арифметических операций

 

2. Операторы сдвига выполняют сдвиг выражения на указанное количество разрядов (рис. 9).

Рис. 9. Синтаксис операторов сдвига

 

3. Операторы сравнения (возвращают значение «истина» или «ложь») предназначены для формирования логических выражений (рис. 10 и табл. 3). Логическое значение «истина» соответствует цифровой единице, а «ложь» – нулю.

Рис. 10. Синтаксис операторов сравнения

Таблица 3. Операторы сравнения

4. Логические операторы выполняют над выражениями побитовые операции (рис. 11). Выражения должны быть абсолютными, т. е. такими, численное значение которых может быть вычислено транслятором.

Рис. 11. Синтаксис логических операторов

 

5. Индексный оператор []. Скобки тоже являются оператором, и транслятор их наличие воспринимает как указание сложить значение выражение_1 за этими скобками с выражение_2, заключенным в скобки (рис. 12).

Рис. 12. Синтаксис индексного оператора

 

Заметим, что в литературе по ассемблеру принято следующее обозначение: когда в тексте речь идет о содержимом регистра, то его название берут в круглые скобки. Мы также будем придерживаться этого обозначения.

6. Оператор переопределения типа ptr применяется для переопределения или уточнения типа метки или переменной, определяемых выражением (рис. 13).

Тип может принимать одно из следующих значений: byte, word, dword, qword, tbyte, near, far.

Рис. 13. Синтаксис оператора переопределения типа

 

7. Оператор переопределения сегмента «:» (двоеточие) заставляет вычислять физический адрес относительно конкретно задаваемой сегментной составляющей: «имя сегментного регистра», «имя сегмента» из соответствующей директивы SEGMENT или «имя группы» (рис. 14). При обсуждении сегментации мы говорили о том, что микропроцессор на аппаратном уровне поддерживает три типа сегментов – кода, стека и данных. В чем заключается такая аппаратная поддержка? К примеру, для выборки на выполнение очередной команды микропроцессор должен обязательно посмотреть содержимое сегментного регистра cs и только его. А в этом регистре, как мы знаем, содержится (пока еще не сдвинутый) физический адрес начала сегмента команд. Для получения адреса конкретной команды микропроцессору остается умножить содержимое cs на 16 (что означает сдвиг на четыре разряда) и сложить полученное 20-битное значение с 16-битным содержимым регистра ip. Примерно то же самое происходит и тогда, когда микропроцессор обрабатывает операнды в машинной команде. Если он видит, что операнд – это адрес (эффективный адрес, который является только частью физического адреса), то он знает, в каком сегменте его искать, – по умолчанию это сегмент, адрес начала которого записан в сегментном регистре ds.

А что же с сегментом стека? В контексте нашего рассмотрения нас интересуют регистры sp и Ър. Если микропроцессор видит в качестве операнда (или его части, если операнд – выражение) один из этих регистров, то по умолчанию он формирует физический адрес операнда, используя в качестве его сегментной составляющей содержимое регистра ss. Это набор микропрограмм в блоке микропрограммного управления, каждая из которых выполняет одну из команд в системе машинных команд микропроцессора. Каждая микропрограмма работает по своему алгоритму. Изменить его, конечно, нельзя, но можно чуть-чуть подкорректировать. Делается это с помощью необязательного поля префикса машинной команды. Если мы согласны с тем, как работает команда, то это поле отсутствует. Если же мы хотим внести поправку (если, конечно, она допустима для конкретной команды) в алгоритм работы команды, то необходимо сформировать соответствующий префикс.

Префикс представляет собой однобайтовую величину, численное значение которой определяет ее назначение. Микропроцессор распознает по указанному значению, что этот байт является префиксом, и дальнейшая работа микропрограммы выполняется с учетом поступившего указания на корректировку ее работы. Сейчас нас интересует один из них – префикс замены (переопределения) сегмента. Его назначение состоит в том, чтобы указать микропроцессору (а по сути, микропрограмме) на то, что мы не хотим использовать сегмент по умолчанию. Возможности для подобного переопределения, конечно, ограничены. Сегмент команд переопределить нельзя, адрес очередной исполняемой команды однозначно определяется парой cs: ip. А вот сегменты стека и данных – можно. Для этого и предназначен оператор «:». Транслятор ассемблера, обрабатывая этот оператор, формирует соответствующий однобайтовый префикс замены сегмента.

Рис. 14. Синтаксис оператора переопределения сегмента

 

8. Оператор именования типа структуры «.»(точка) также заставляет транслятор производить определенные вычисления, если он встречается в выражении.

9. Оператор получения сегментной составляющей адреса выражения seg возвращает физический адрес сегмента для выражения (рис. 15), в качестве которого могут выступать метка, переменная, имя сегмента, имя группы или некоторое символическое имя.

Рис. 15. Синтаксис оператора получения сегментной составляющей

 

10. Оператор получения смещения выражения offset позволяет получить значение смещения выражения (рис. 16) в байтах относительно начала того сегмента, в котором выражение определено.

Рис. 16. Синтаксис оператора получения смещения

 

Как и в языках высокого уровня, выполнение операторов ассемблера при вычислении выражений осуществляется в соответствии с их приоритетами (табл. 4). Операции с одинаковыми приоритетами выполняются последовательно слева направо. Изменение порядка выполнения возможно путем расстановки круглых скобок, которые имеют наивысший приоритет.

Таблица 4. Операторы и их приоритет


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)