АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

I Распад аустенита в изотермических условиях

Читайте также:
  1. I. При каких условиях эта психологическая информация может стать психодиагностической?
  2. А) Поведение фирмы в условиях совершенной конкуренции
  3. Анализ инвестиционного проекта в условиях риска.
  4. Анализ инвестиционных проектов в условиях инфляции
  5. Анализ ФСП основывается главным образом на относительных показателях, так как абсолютные показатели баланса в условиях инфляции сложно привести в сопоставимый вид.
  6. Б) Надлом и распад
  7. В естественных условиях и условиях контакта с врачом психиатром-наркологом
  8. В определенных условиях ВЗД способны обеспечить ощутимую экономию.
  9. В современных условиях
  10. В современных условиях комплексный экономический анализ – это управленческий анализ, который необходим для решения сложных экономических задач.
  11. В условиях компьютерной обработки данных

 

Чтобы произошел изотермический распад аустенита, необходимо нагреть сталь для получения однородной аустенитной структуры, а затем быстро перенести образец (или изделие) в соляную ванну, имеющую заданную температуру распада, и выдержать в ней определенное время. Во время этой изотермической выдержки и будет происходить распад аустенита, за которым наблюдают по изменению магнитных свойств или размеров образца. Отмечают при заданной температуре время начала распада аустенита и его окончания. Эти точки наносят на диаграмму распада аустенита и получают линии начала и окончания распада аустенита После его окончания охлаждение производится на воздухе.

Изучение процессов, происходящих в аустените при разных тем­пературах переохлаждения относительно А1, привело к созданию диаграмм изотермического распада аустенита (С - образных кривых).

На рис. 7.4 представлена диаграмма изотермического распада аустенита эвтектоидной стали. Выше линии А1 находится температурная область устойчивого аустенита. Линия 1 показывает время начала распада аустенита; левее от нее располагается область переохлажденного аустенита. Линия 2 соответствует окончанию распада аустенита; правее нее - область существования продуктов распада аустенита. Горизонтальные линии Мн и Mк – соответствуют началу и концу мартенситного превращения.

Превращение

А1

А диффузионное

600 (перлитное)

 

промежуточ-

400 ное(бейнитное)

 

Мн

200 бездиффузион

А ® М ное(сдвиговое,

мартенситное)

0 Мк

-120

1 10 102 103 104 105 с

Рисунок 7.4 - Диаграмма изотермического распада аустенита эвтектоидной стали

 

Если образец, нагретый до температуры tн (рис.7.3), перенести в ванну с температурой t n, то переохлажденный аустенит сохраняется до момента а (инкубационный период), после чего начинается его распад. Заканчивается распад в момент д; при дальнейшей выдержке и охлаждении полученная структура сохраняется без изменения.

Строение и свойства получаемых структур сильно зависят от температуры распада аустенита. При этом меняются и характер получаемых структур и механизм распада аустенита. По этим признакам диаграмма изотермического распада делится на 3 температурных области: I - перлитную (А1 -» 550°С), ІІ- промежуточную или бейнитную (» 550 – Мн) и ІІІ - мартенситную (Мн – Мк).

Превращение в перлитной области может быть только диффузионным: поскольку из аустенита с содержанием углерода 0,8% образуется феррит (равновесное содержание углерода менее 0,025%) и цементит (содержание углерода 6,67%), т.е. происходит существенное перераспре­деление атомов железа и углерода. Образующаяся при этом структура обычно состоит из пластин ферита и цементита. Причем нетрудно расчитать, что пластины цементита должны быть в 5 – 6 раз тоньше. Чем пластины феррита.

С понижением температуры (повышением степени переохлаждения) строение перлита становится более дисперсным, т.е. пластинки феррита и цементита становятся все более тонкими. Это происходит из-за действия двух конкурирующих факторов: с повышением степени переохлаждения выигрыш энергии т.е. стимул к превращению становится все больше, а диффузионная подвижность атомов – все меньше. Поэтому в начале перераспределение атомов происходит все в меньшем объеме, а затем меняется и механизм превращения (перлит – сорбит- троостит – бейнит - мартенсит), прочность и твердость стали по мере снижения температуры распада возрастают. Сорбит в оптическом микроскопе выглядит как темные зерна различного оттенка, пластинчатое строение его заметно лишь в отдельных зернах. Строение троостита в оптическом микроскопе не дифференцируется, он имеет вид сплошного черного поля. При наблюдении в электронном микроскопе четко обнаруживается пластинчатое строение троостита.

Твердость стали со структурами, получающимися при разных температурах распада, приведена в табл. 7.1.

 

Таблица 7.1 - Твердость эвтектоидной стали в зависимости от структуры

 

Структура Твердость, НВ
Аустенит 180-200
Крупнопластнчатый перлит 180-200
Мелкопластинчатый перлит 220-240
Сорбит закалки 280-320
Троостит закалки 400-450
Верхний бейнит 450-500
Нижний бейнит 500-550
Мартенсит 600-650

 

В мартенситной области при температуре ниже Мн диффузия атомов углерода и самодиффузия атомов железа практически не происходят, поэтому мартенситное превращение носит бездиффузионный характер. Оно состоит в перестройке кристаллической решетки ГЦК в ОЦК путем группового сдвига атомов по определенным кристаллографическим плоскостям аустенита, вследствие чего кристаллы образующейся a-фазы имеют форму пластин, а на шлифе - игл.

Углерод остается в решетке a-Fe на тех же местах, где он располагался в g-Fe. При этом количество углерода значительно превышает его предельную растворимость в a-Fe, равную 0,02%. Поэтому получаемая структура, называемая мартенситом, представляет собой пересыщенный твердый раствор углерода в a-Fe. Кристаллографическая решетка мартенсита из-за избытка углерода упруго искажается и становится тетрагональной. Из-за высоких внутренних напряжений мартенсит отличается большой твердостью и высокой хрупкостью. Чем сильнее степень пересыщения твердого раствора углеродом, тем больше становятся искажения, которые количественно оцениваются степенью тетрагональности с/а, и выше твердость.

Характерным отличием мартенситного превращения от перлитного является также то, что оно не происходит в изотермических условиях. Мартенситное превращение происходит только в условиях непрерывного охлаждения, начинаясь при температуре Мн и заканчиваясь при температуре Мк. Если прервать охлаждение стали в интервале мартенситного превращения, то превращение приостанавливается и возобновляется только после дальнейшего охлаждения. После окончания мартенситного превращения всегда остается незначительное количество нераспавшегося аустенита. Положение точек Мн и Мк зависит от содержания в сталях углерода (рис. 7.5) и легирующих элементов.

 

Рисунок 7.5 – Температура точек Мн и Мк в зависимости от содержания углерода

 

 

Бейнитная область является промежуточной как по температурному интервалу, так и по механизму превращения. Превращение имеет характерные черты как перлитного, так и мартенситного превращений. Диффузионная подвижность атомов железа практически нулевая, поэтому перестройка кристаллической решетки происходит сдвиговым путем, как в случае мартенситного превращения, и в результате получаются пластинчатые кристаллы несколько пересыщенной углеродом a-фазы. Скорость диффузии углерода при этом еще значительна; вследствие чего атомы углерода перераспределяются диффузионным путем с образованием карбидной фазы. Продукты распада аустенита представляют собой слегка пересыщенный феррит и карбидные частицы, почти как в перлитной области.

Начинается превращение с перераспределения углерода в аустените. В областях обедненных углеродом повышается точка Мн и происходит сдвиговое превращение, а в областях, обогащенных углеродом выделяется карбидная фаза и также происходит мартенситное превращение в оставшемся твердом растворе. Структура, получающаяся в промежуточной области, называется бейнитом и разделяется на два типа. Верхний бейнит обладает меньшей твердостью из-за меньшей степени пересыщения углеродом и большей хрупкостью из-за того, что карбидные частицы выделяются преимущественно на границах пластин a-фазы и имеет перистое строение. Нижний бейнит обладает большей твердостью из-за большей степени пересыщения углеродом a-фазы и большей вязкостью из-за того, что частички карбидной фазы образыются внутри a-кристаллов и имеет игольчатое строение. Для получение в структуре сталей весьма удачной по сочетанию механических свойств структуры нижнего бейнита существует специальный вид термической обработки – изотермическая закалка.

Таким образом изменяя условия распада аустенита, можно получать сталь с различной структурой и соответственно свойствами, что и используется в практике термической обработки.

Диаграммы изотермического распада аустенита в до- и заэвтектоидных сталях отличаются от диаграммы для эвтектоидной стали наличием области, в которой происходит выделение феррита, если сталь доэвтектоидная, или цементита, если сталь заэвтектоидная.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)